Environmental Services Division

SEPA Investigation of Soil And **Water Contamination At** Western Processing, King County, Washington

September to November, 1982

AT WESTERN PROCESSING INC., KING CO., WA PART I OF II

ENVIRONMENTAL SERVICES DIVISION
U.S. ENVIRONMENTAL PROTECTION AGENCY - REGION X
1200 SIXTH AVENUE
SEATTLE, WASHINGTON 98101

MAY 1983

DISCLAIMER

This report has been reviewed by the U.S. Environmental Protection Agency and approved for public release. Mention of trade names or commercial products does not constitute endorsement or recommendation for use by the U.S. Environmental Protection Agency.

ACKNOWLEDGEMENTS

The EPA is grateful to Hussein Aldis for editing and providing additional interpretive sections to this report and also for the assistance and critical review of many people from both the U.S. Environmental Protection Agency (EPA) Region X and the Region X Field Investigation Team of Ecology and Environment, Inc. (EEI) in Seattle particularly Thomas Tobin and Carol Mitrani. A special thanks is due to the EPA Region X Hazardous Waste Site Investigation Team and to the EEI staff members who performed the on-site study. Their hard work under difficult conditions made this report possible. Thanks are also due to Jane Gans of EEI for her assistance in typing and producing the report, and to Billie Lee of EPA for her many hours of typing assistance in the early stages of report production.

TABLE OF CONTENTS PART I

		Page
1.0	SUMMARY	. 1
2.0	INTRODUCTION	. 2
3.0	GEOLOGY AND HYDROLOGY	. 6
4.0	PRELIMINARY SITE INVESTIGATION AND SITE SAFETY	. 11
	SAMPLING PROGRAM 5.1 Well Installation and Soil Sampling 5.2 Groundwater Sampling 5.3 Wash Water and Waste Water Samples 5.4 Chemical Analysis 5.5 Sample Documentation and Handling 5.6 Quality Assurance Program	. 13 . 16 . 17 . 17
6.0	RESULTS AND DISCUSSION 6.1 Introduction	. 22 . 23 . 23 . 24 . 27
BIBL	IOGRAPHY	

APPENDIX A - 129 PRIORITY POLLUTANTS LIST

APPENDIX B - SUMMARY ANALYTICAL RESULTS FOR PRIORITY POLLUTANTS

LIST OF TABLES

	Page
TABLE 1 WATER TABLE ELEVATIONS	
TABLE 2 SUMMARY OF SOIL SAMPLING LOCATIONS	15
TABLE 3 CHLORIDE AND TOTAL DISSOLVED SOLIDS RESULTS	18
TABLE 4 CONDUCTIVITY AND PH READINGS AT WELLS	19
TABLE 5 EP TOXICITY TEST RESULTS	25
TABLE 6 BASE/NEUTRAL EXTRACTIBLES (>1ppm)	26
TABLE 7 KNOWN CARCINOGENS	28
TABLE 8 SUSPECTED CARCINOGENS	29
TABLE 9 DATA SUMMARY FOR SELECTED WELLS	31
TABLE 10 DATA SUMMARY FOR SELECTED SOIL SAMPLES	32

LIST OF FIGURES

Part of the second seco	age
FIGURE 1 LOCATION MAP	3
FIGURE 2 SITE PLAN	ļ
FIGURE 3 MONITORING WELL LOCATIONS	,
FIGURE 4 WATER TABLE NOVEMBER 1982)
FIGURE 5 WATER TABLE MAY 1983)
FIGURE 6 AMBIENT AIR SAMPLING LOCATIONS	2
FIGURE 7 SOIL SAMPLING LOCATIONS	
FIGURE 8 PRIORITY POLLUTANT METALS IN SOILS (ppm)	3
FIGURE 9 PRIORITY POLLUTANT METALS IN SHALLOW GROUNDWATER (mg/1) 34	
FIGURE 10 TOTAL PRIORITY POLLUTANT VOLATILES IN SOILS (ppm)	,
FIGURE 11 PRIORITY POLLUTANT VOLATILES IN SHALLOW GROUNDWATER (mg/1) 36	
FIGURE 12 NON PRIORITY POLLUTANT SOLVENTS IN SHALLOW GROUNDWATER	,
FIGURE 13 TOTAL PRIORITY POLLUTANT ACID EXTRACTIBLES IN SOILS (ppm) 39)
FIGURE 14 PRIORITY POLLUTANT ACID EXTRACTIBLES IN SHALLOW GROUNDWATER 40	
FIGURE 15	
TOTAL PRIORITY POLLUTANT BASE/NEUTRAL EXTRACTIBLES IN SOILS (ppm)	

PART II

TABLE OF APPENDICES

APPENDIX A GEOLOGIC WELL LOGS AND CROSS SECTIONS

APPENDIX B

ANALTYICAL DATA TABLES

Section 1. Decontamination and Wash Water Data Section 2. Chlorides and Total Dissolved Solids Data

Section 3. Conductivity and pH Data

Section 4. Priority Pollutant Data
Section 5. Non-Priority Pollutants Data
Section 6. Tentatively Identified Compounds
Section 7. Sample Identification

Section 8. Correction Factors From Wet to Dry Weight

APPENDIX C LIST OF 129 PRIORITY POLLUTANTS

APPENDIX D SAMPLE DOCUMENTATION

APPENDIX E QUALITY ASSURANCE FORMS

APPENDIX F SITE SAFETY PLAN 1.0 SUMMARY

Western Processing, Inc., Kent, Washington, which operated as an industrial waste recycling facility, was suspected of having contaminated soil, groundwater and surface water on and around its 13-acre site.

During October 1982 a series of 32 on-site holes and six offsite holes from 15 to 30 feet deep were excavated at 30 locations in order to sample the soil and to install wells and well points. Eleven samples of surface soil and seven hand augered samples of soil from a berm on the east edge of the site were also taken. In all, 130 soil samples were taken and 35 groundwater samples were obtained from the wells and well points. Additionally, the water used to wash down personnel, vehicles and equipment coming off the site was sampled. All samples were analyzed for a wide variety of organic chemicals and metals, and groundwater was checked for acidity and alkalinity.

Significant levels of many toxic substances were found in a high proportion of the soil and groundwater samples; these included 21 known carcinogens and 28 suspected carcinogens. Off site wells indicate that some of these toxic substances have migrated across the site boundaries. Contamination in the groundwater extends down to at least 30 feet from ground surface and out to at least 200 feet north of the site boundary. Groundwater levels under the site imply that contaminated groundwater will move offsite to west, east and north.

At least 19 of the soil samples and six of the groundwater samples were defined as hazardous waste by the standards of the Resource Conservation and Recovery Act (RCRA) by reason of their content of soluble toxic metal. In one well the groundwater was so alkaline that it was a RCRA hazardous waste by reason of its corrosivity. The used wash water collected after decontamination of vehicles, personnel and equipment, contained high levels of lead and other toxic substances.

Western Processing began operations in 1957 as an animal by-products and brewer's yeast processor. Since then the operation expanded to include the handling of solvents, flue dust, battery chips, acids, cyanides and a wide variety of industrial waste. The company has Interim Status as a storage facility for hazardous materials as regulated by the Resource Conservation and Recovery Act (RCRA). It has no state or local permits for discharge to a sewer, to surface water or to the ground and groundwater.

The site is located within the City of Kent but about four miles north of the central business district. It lies in Section 1, Township 22N Range 4E, Willamette Meridian, the entrance is at latitude 47°25'37"N, longitude 122°14'31"W, and the address is 7215 South 196th Street (see Fig. 1).

The facility occupies about 13 acres on which there is a small laboratory, a solvent recycling plant, a fertilizer plant, bulk storage tanks, drum storage areas, piles of flue dust, construction debris, and large cement-block above ground storage lagoons for liquid wastes, cooling water and process water. Mill Creek, also known as King County Drainage Ditch #1, runs across the northwest corner of the site from south to north. Along the eastern boundary the Kent Bicycle Trail occupies a former railroad right-of-way, along which runs a high voltage power line and a drainage ditch. Beyond these to the east is the Burlington Northern Railroad. Access is from South 196th Street along the northern boundary (Figure 2).

The site lies in the flood plain of the Duwamish/Green River. The area is very flat, with an average elevation around 20 feet above mean sea level.

During May 1982 the U.S. Environmental Protection Agency (EPA) conducted a stream survey around Western Processing Inc. (EPA 1982). Twenty-six of the priority pollutants (Appendix & Part I) were found in the surface waters around the site, all of which were subsequently found on-site.

During June 1982 the Municipality of Metropolitan Seattle, (METRO), sampled surface water upstream and downstream of Western Processing in Mill Creek. A marked increase in heavy metal content, mostly zinc, was noted.

As a result of these findings and an on-site inspection, the EPA issued an order under Section 3013 of the Resource Conservation and Recovery Act (RCRA), to require the owner to conduct such monitoring as would be reasonable to acertain the nature and extent of hazard to human health or the environment presented by the site. After the site owner had declared himself unable to carry out the necessary monitoring, a court order was obtained to enable the EPA and its contractors to investigate the site.

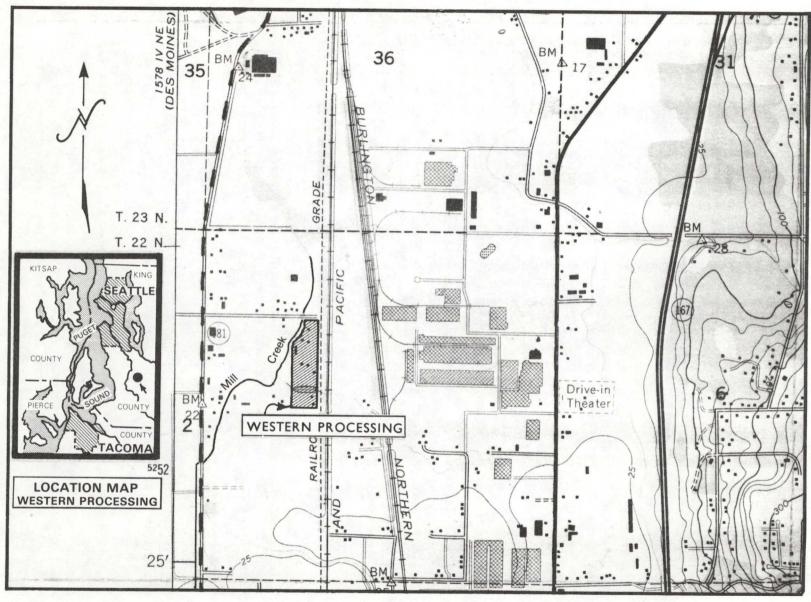


Figure 1
WESTERN PROCESSING
Kent, Washington

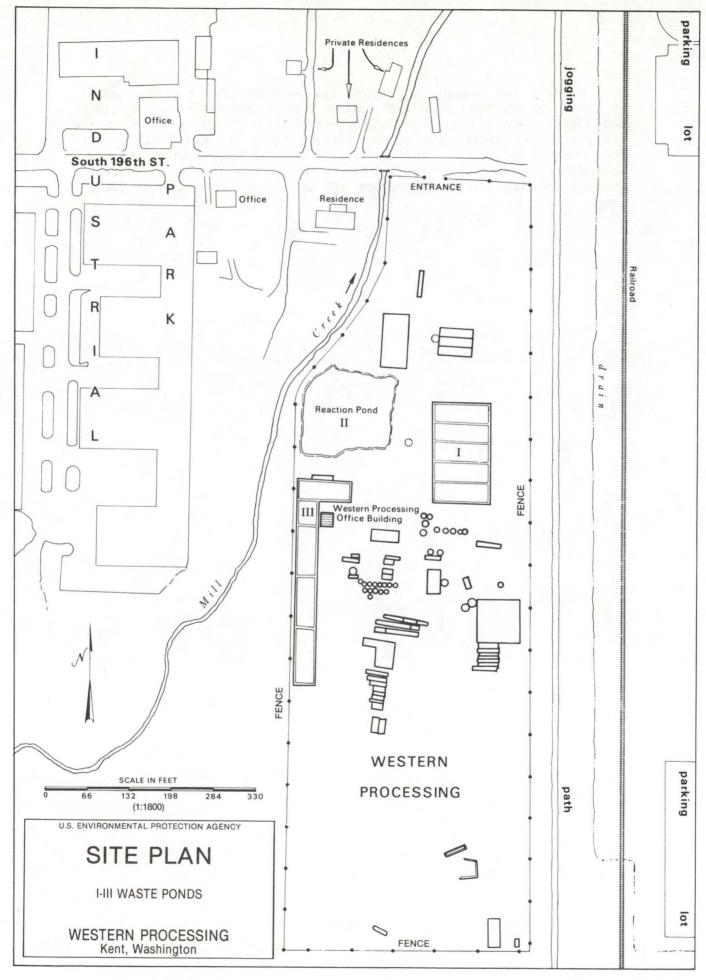


Figure 2

To help the reader the report has been divided into two parts. The first is the text with explanatory figures and tables. The tables and figures are placed immediately after their first mention in the text, with the exceptions of the summary table of analytical results for priority pollutants, and the list of priority pollutants, which are appendices to Part I. Part II consists of the Table of Contents, Summary and Appendices, including all well logs and full analytical data.

The Green River valley lies within the Puget Sound Lowland which consists of a broad plain of glacial sediments cut into by a network of marine embayments. The Green River valley was formerly one of those embayments and is filled with sand, gravel, silt and clay brought down by the White, Green, Black and Cedar Rivers (Mullineaux, 1970).

During the course of the investigation, the Western Processing site itself was found to be underlain by sand, silt, gravel, clay, peat and artificial fill. In places as much as six to eight feet of fill were recorded and in Well 22B battery casings were reported mixed with silty sand from 15 to 24 feet. Clay was encountered in a number of boreholes at depths from 6-15 feet, being more common under the northern part of the site, at Wells 1A, 2, 4, 5, 6, 7, 8, 9, 10, 11A, 12, 14, 17, and 20, but absent at Wells 18, 22B, 23, 24, and 25B (see Fig. 3 and Appendix A Part II). The clay is gray to bluish gray in color and contains organic material. It was probably laid down in a lake, or lakes, which were common in the Green River valley (Mullineaux, 1970), and varies in thickness from one to four feet. The commonest materials encountered in boreholes were fine sand, light brown or grayish brown, and silt, gray to grayish brown, often mixed with some clay.

The water table was found at very shallow depths, ranging from 3 to 12 feet and averaging 6 feet from the surface. At Well 19, which was installed in a depression north of S. 196th Street the water flowed out at the surface. Water level measurements taken on November 15, 1982 (Table 1) suggest that the relatively permeable material at the surface within the facility and the lack of vegetation have resulted in a higher rate of percolation of rain into the ground than in surrounding areas. This appears to have created a groundwater "high" or mound under Western Processing (see figs. 4 & 5). Although the predominant flow directions of groundwater are west and north to Mill Creek, the mound would cause flow to the east and even south within the site for a short distance as well. The flow at Well 19 is probably a response to this local increase in hydraulic head under a confining clay layer.

There are higher hydraulic heads in the shallow wells of adjacent pairs such as 11A, 11B and 17A, 17B (Table 1). This indicates that the groundwater mound has created a hydraulic head which is driving groundwater down into the aquifer at least to levels below 30 feet, since flow is always from higher hydraulic head to lower.

A berm along the east side of Western Processing now mostly prevents surface runoff in that direction. Surface runoff from the site was observed during the site investigation going west to Mill Creek or out of the front gate and down into a depression outside the north east corner of the site.

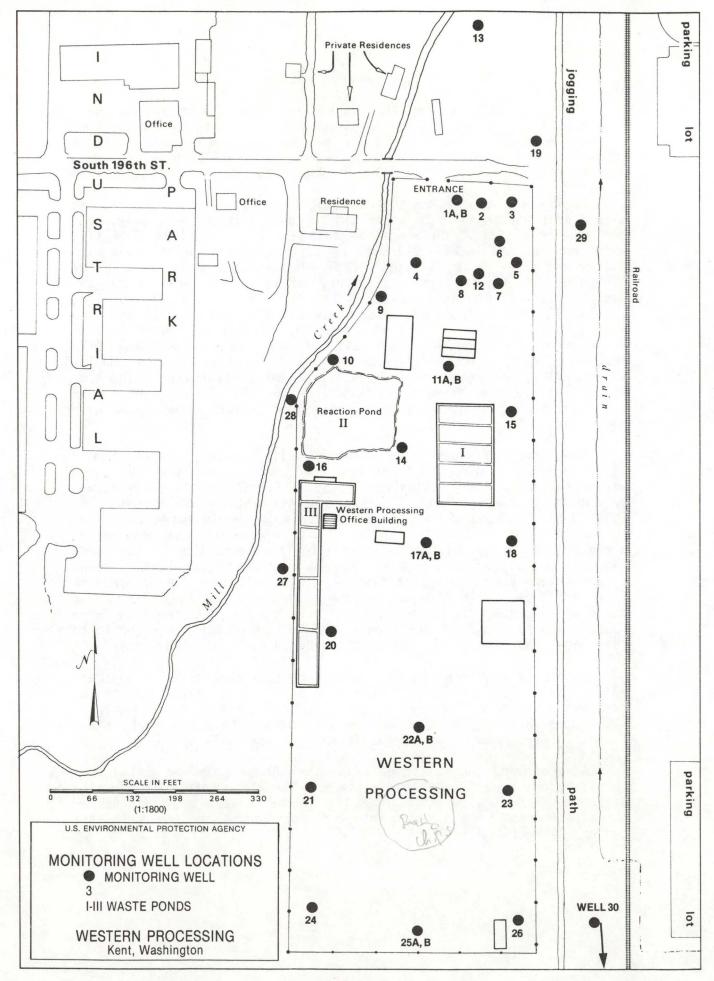


Figure 3

TABLE 1 WATER TABLE ELEVATIONS NOVEMBER 1982 AND MAY 1983

Observation Well	Water Table Elevations (Feet Above Mean Sea Level		
Number	November 1982	May 1983	
1A (shallow)	13.55	15.19	
1B (deep)	12.86	14.40	
	14.37	15.65	
2 3 4	18.35	19.41	
4	12.37	13.76	
5	15.17	16.62	
5 6 7	14.19	15.79	
7	14.59	16.26	
8	13.39	15.28	
9	11.35	12.21	
10	12.09	12.50	
11A (shallow)	14.83	16.53	
11B (deep)	12.94	14.97	
12	14.10	15.72	
13	11.91	13.70	
14	Cap Rusted On		
15	15.29	17.24	
16	13.73	13.69	
17A (shallow	16.39	18.20	
17B (deep)	12.72	14.57	
18	15.86	18.25	
19	14.35		
20	15.88	17.23	
21	12.80	15.24	
22A (shallow)	13.90	15.68	
22B (deep)	13.77	14.72	
23 24	14.05 13.34	16.30	
	13.34	16.17	
25A (shallow)	13.85	16.03	
25B (deep) 26	14.48	15.89 16.13	
27	14.48	15.13	
28	14.51	12.46	
29		15.01	
23		13.01	

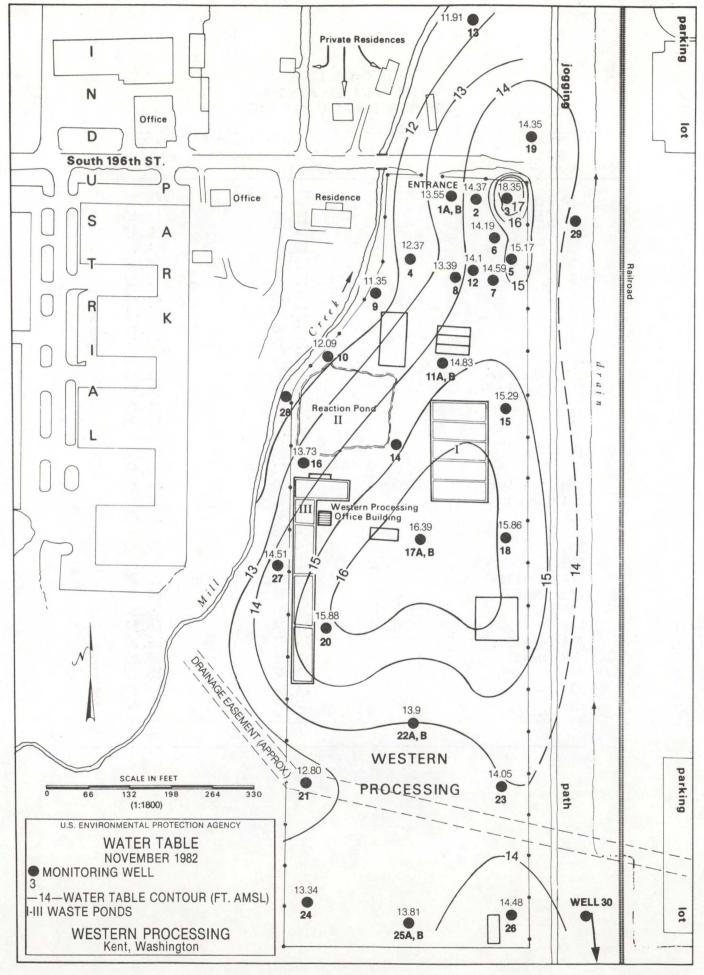


Figure 4

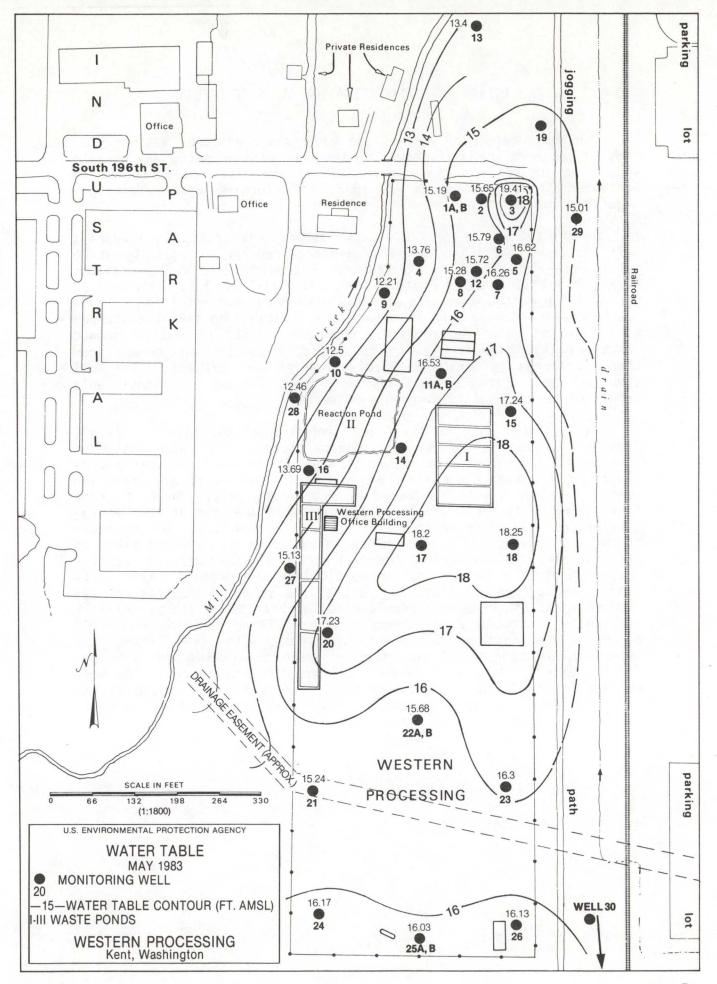


Figure 5

The toxic nature of many of the materials handled by Western Processing required the development of a safety plan prior to any on-site work. An ambient air characterization of the site was performed on September 23, and September 27, 1982, to determine what respiratory hazards might be present.

On September 23, the field team members entered the site wearing self contained breathing apparatus and measured the air quality at 26 sites (see Fig. 6), using a Century Systems Organic Vapor Analyzer (OVA), Model 128, and a Photoionizer, HNU Model PI 101. Station 17 showed 4-5 ppm, the only site above a background level of 1 ppm. Shallow holes were dug by hand at a number of locations to see if disturbed soil released volatile organics. Stations 3, 11, 17 and 20 showed relatively high levels of organics, so soil samples were taken from these locations to determine what substances were present. The soil samples from Stations 17 and 20 showed detectible but not quantifiable levels of several volatile organic solvents.

On September 27, the field team returned to the site to install High Vol samplers with activated charcoal tubes. Four were installed on-site at Stations 3, 11, 17 and 20 and two off-site at Stations 27 and 29 in an attempt to collect organic vapor from the normal breathing zone. Sampling was for a period of four hours only. None of these tubes showed detectible levels of organics when analyzed at the laboratory of Ecology and Environment, Inc., Buffalo, New York. On the basis of the soils data, and because of the presence of barrels and tanks of waste on-site, it was decided that all personnel would wear air purifying respirators with combination particulate and organic vapor cartridges when working on site. As part of the safety precautions it was required that the breathing zone around any hole being dug by drill or backhoe be monitored at all times with the OVA or photoionizer. personnel leaving the site were decontaminated with steam cleaner and detergent solution. All equipment entering or leaving the site was steam cleaned. Wash water from these decontamination operations were collected into 55-gallon Department of Transporation approved drums. After analysis they were removed to an approved waste disposal site.

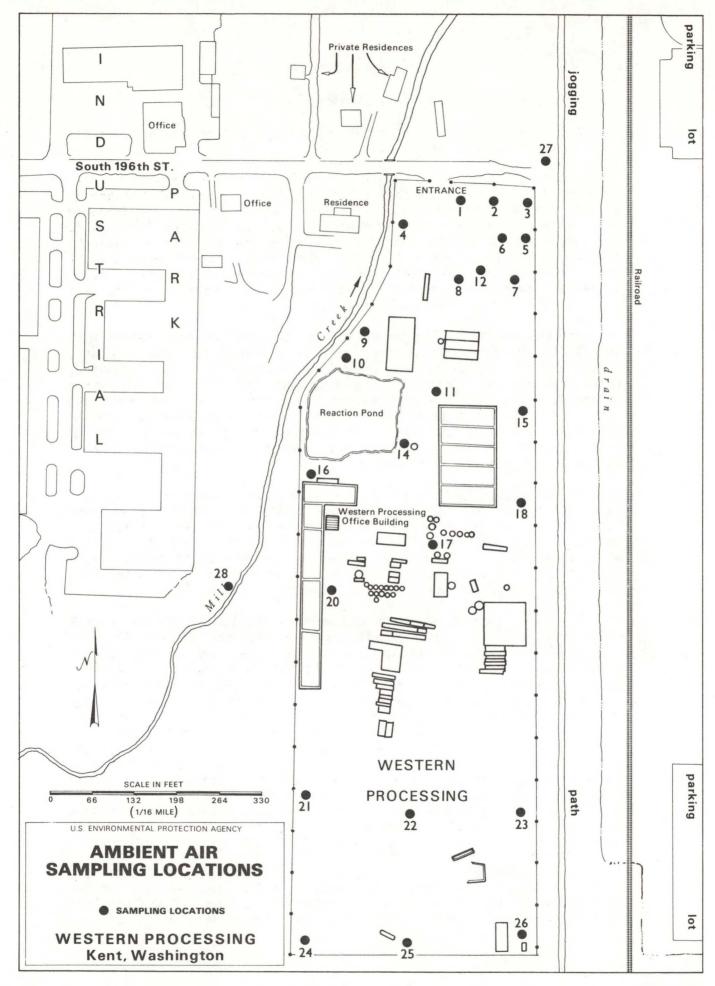


Figure 6

5.1 Well Installation and Soil Sampling

As a result of the EPA and METRO surveys and an on-site inspection, the EPA began site investigation.

Sampling sites were proposed on the basis of the known site history and from review of archival imagery, that is, aerial photographs dating from 1960 through 1980. A number of wells were installed around the perimeter, and a number of two level wells (Stations 1, 11, 17, 22), were put in a line down the center of the site to investigate changes in hydraulic head with depth. Remaining locations were selected as being on the site of former lagoons, waste piles, spills, etc., or between such sites and the probable receiving waters to north, west and east of the site (see Fig. 2).

The EPA was initially informed that the site had been raised with demolition debris and that they must be prepared to find concrete, brick, reinforcing bars, etc. below the surface. It was proposed, therefore, to use a backhoe to dig through the fill, an excavation method that could handle such material and also expose the depth and type of fill. Holes deeper than the reach of the backhoe were to be drilled with a cable tool rig. The first two holes, at Wells 1 and at Well 11, were dug with the backhoe but exposed no demolition debris. Instead, sand and silt were common.

At Station 11 the level of volatile organics in the air around the backhoe pit was measured at greater than 1000 ppm. For this reason and because the site owner claimed that the backhoe pits were creating a hazard for his employees, it was decided to sample soil and install wells with the cable tool only. Later it was decided to bring a soil sampling drill rig on-site to sample soil with a small diameter (3") solid stem auger, and to install well points in the holes.

The initial holes were dug and wells installed in the first week of October. The soil sampling rig was brought on-site October 12. On-site drilling was completed by October 26. Because of the methods used, none of the soil samples is of undisturbed material. Contamination from levels other than that being excavated was minimized by carefully cleaning up the hole before sampling, in the case of the backhoe and auger, and by driving down steel casing behind the bit to shut off the upper part of the hole when the well was being constructed using the cable tool rig. Samples taken with the cable tool from below the water table were scraped off the bit. For a summary of soil samples taken from well locations see Table 2. Each soil sample was collected into two 8-oz. wide mouth glass jars with teflon-lined lids. The soil was scooped with a gloved hand into the bottles. Between each sampling an outer disposable vinyl glove was discarded and an inner butyl rubber glove washed in clean water, brought onto the site by the field team.

Nine samples were also collected with a hand auger, on October 25, along the east side of the site. Seven came from between one and two feet below the surface of a berm of material scraped off Western Processing's yard and heaped up along its east side to prevent run-off in-

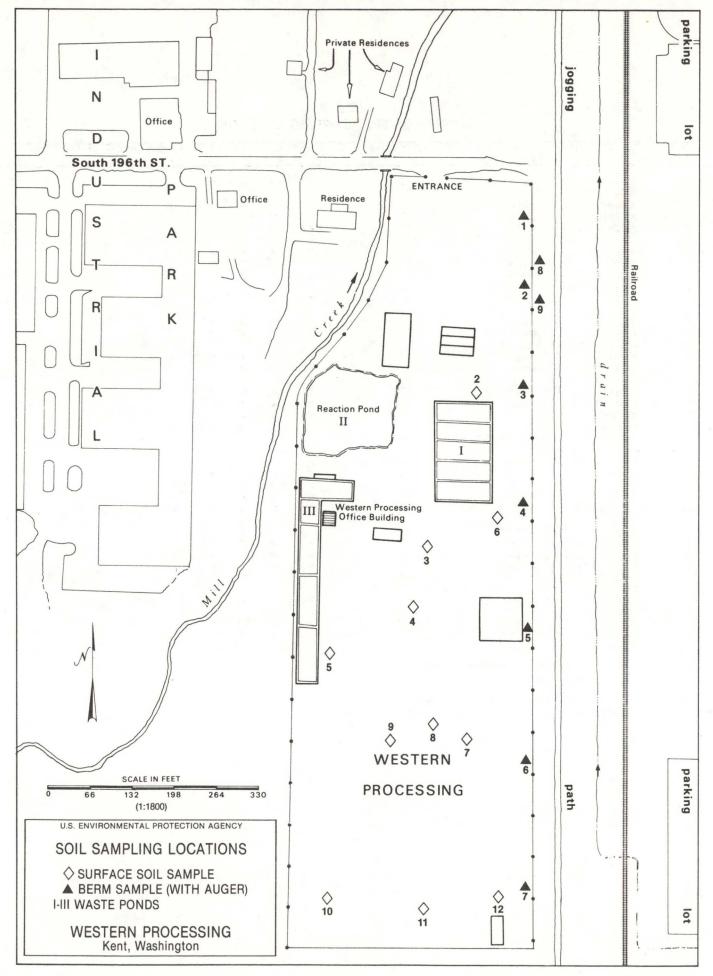


Figure 7

TABLE 2
SUMMARY OF SOIL SAMPLING LOCATIONS

Well	Method of	Method of	Depth to Well	Dept	hs a	t wh	ch	samp	es w	ere c	ollec	ted (1	+.)
Number	Drilling	Sampling	Point (ft.)	3	6	9	12	15	18	21	24	27	30
IA	backhoe	backhoe	12	×	×	×	×						
IB	cable tool		30	^	^	^	^						
	auger	auger	12	×	×	×	×	×					
2 3	auger	auger	12	×	×	×	^	^					
4	auger	auger	15	×	×	×							
5	auger	auger	12	×	×	×	×						
6	auger	auger	12	×	×	×	×						
7.	auger	auger	12	×	×	×							
8	cable tool	auger	16	×	×	×							
9	auger	auger	15	×	×	×	×						
10	auger	auger	15	×	×	×	×	×					
IIA	backhoe	backhoe	12	×	×	×*	×						
IIB	cable tool		29										
12	auger	auger	11	×	×	×	×	×					
13	auger	auger	9	×	×	×							
14			1.5										
	auger	auger	15	×	×	×	×	×					
15	cable tool	auger	16	×	×	×							
16	auger	auger	15	×	×	×	×	×					
17A	cable tool	cable tool	15	X	×	×	X	×					
17B	cable tool	cable tool	30						×	×	×	×	X
18	cable tool	auger	16	×	×	×							
19	auger	auger	6	×	×	×	-						
20	auger	auger	15	×	×	×	×						
21	auger		15					×					
22A		auger	15	×	×	×	×	×					
221	cable tool	cable tool	10	× .	×	×	×	×					
22B	cable tool		27										
23	cable tool	auger	15	×	×	×							
24	auger	auger	15	×	×	×	×	×					
25A	cable tool	auger	16	×	×	×	^	^					
25B	cable tool		26	7		~							
26	cable tool	auger	16	×	×	×							
27	auger	auger		×	×								
28	auger	auger	12	×	×	×							
29	auger	auger	12	×	×	×							
30	auger	auger	12					1					

^{*} Samples collected at 8 ft. and 10 ft.

⁻⁻⁻⁻ No sample collected since soils were documented in adjacent hole.

to a ditch outside the east fence. The remaining two samples came from within the ditch at the north end of the site where a pipe protrudes through the berm and boundary fence and where the material in the ditch is stained as if by spilled material (see Fig. 7). These were handled in the same manner as the other soil samples.

Eleven samples of surface soil were collected November 18, from what appeared to be spill sites (see Fig. 7). These were scraped up with the sample container and pushed into the bottle with the teflonlined lid. The outside of all sample containers were washed before being packed.

Backhoe and cable tool holes had 4-inch PVC casing and slotted screen set in them, the screen was surrounded with gravel pack of pea gravel and a mixture of bentonite and sand placed around the casing to provide a seal up to the surface (see Appendix A Part II). The 3-inch holes drilled with the solid stem auger had stainless steel well points on 2-inch black iron pipe driven down into them. Both wells and well points then had a 6-inch steel casing cemented in around the top of the well and capped with a padlocked steel cap. All wells were surged and bailed or pumped to yield relatively sediment free water as part of well completion. The depth from which water samples were taken depends, of course, on the depth at which the well screen is set (see Appendix A Part II).

5.2 Groundwater Sampling

After all monitoring wells had been installed and water levels measured, all of them were pumped with a Robb Air Pump until either three times the volume of water standing in the casing had been discharged or the well was dry. The first three wells pumped, Nos. 2, 13, and 19 were pumped onto the ground. Later the water pumped from wells was collected into drums and stored with the wash water from the decontamination station. To reduce cross contamination to a minimum the pump and its discharge line were submerged in potable water from the City of Kent fire hydrant and run for five minutes between each well.

Each well was allowed to recharge and then sampled with a stainless steel bailer which had been washed with distilled water and rinsed with reagent grade acetone and then with pure methanol followed by distilled water again. The bailer was then allowed to dry. The bailer was lowered into each well on a monofilament line. A new line was used for each well. On-site wells were sampled from November 1, 1982 to November 12, 1982. Off- site wells were sampled on November 15, 1982.

The bailer's and sampler's gloves were rinsed twice with the water being sampled and then the sample containers were rinsed. Each prelabeled container was then filled and its outside washed off with potable water before it was placed in an ice chest. Two half-gallon brown glass bottles with teflon-lined lids were collected for extractible organics analyses, two 40-ml glass vials with teflon-lined lids for volatile organics and two 1000-ml polyethylene containers for heavy metals and for cyanide analyses. An additional 500-ml polyethylene container was filled to be checked for total dissolved solids and chloride (Table

3). At the time of sampling the conductivity and pH of the water was checked (see Table 4).

5.3 Wash Water and Waste Water Samples

Water used at the decontamination station and from well pumping was collected into recycled steel drums as noted above. At the end of each week a composite sample of water was taken with new glass tubing. Two 1/2-gallon brown glass bottles with teflon-lined lids and two 1000-ml polyethylene containers with teflon-lined lids were filled.

5.4 Chemical Analysis

All but the total dissolved solids/chloride samples from ground-water and wash water/waste water samples were sent to contract laboratories. California Analytical Laboratories, Sacramento, California, analyzed inorganics samples, and Mead CompuChem, Research Triangle Park, North Carolina, analyzed organics. All soil and groundwater samples were analyzed for the heavy metals, acid extractible organics, base/neutral extractible organics and volatile organics on the priority pollutant list (see Appendix A Part I).

All wash water/waste water samples were sent to the EPA Region X Laboratory in Manchester, Washington, to be analyzed for arsenic, mercury, cadmium, nickel, lead, zinc and for polychlorinated biphenyls (PCBs) and benzo[a]pyrene. These parameters were required by METRO as a precondition for discharge to the sanitary sewer. The water was found to be too highly contaminated for this, however.

For the organic priority pollutants the laboratory used analytical methods 601-613 (Federal Register, vol. 44, p. 34408, June 14, 1979). For the metals the laboratory used atomic adsorption (AA) spectroscopic or inductively coupled plasma optical emission spectroscopic methods (Federal Register, vol. 41, p. 52780, December 1, 1976). Levels of detection are established by the contract between EPA and the laboratories, (EPA contract 68-01-6608).

It should be noted that groundwater samples to be analyzed for inorganics by these standard methods are iced, and filtered at the laboratory before being analyzed. In this way only dissolved metals are measured. Groundwater for organics analysis is not filtered at the laboratory. Instead it is extracted with organic solvent, and the solvent extract is analyzed. This process will tend to strip any organics adsorbed on any sediments particles present. Filtering before extraction would particularly tend to remove non-polar compounds which adsorb on sediment.

5.5 Sample Documentation and Handling

Prior to sampling the field team obtained station numbers from the EPA data storage and retrieval computer system (STORET) (Appendix D, Part II). The Sample Management Office of Viar and Co., Arlington, Virgina, assigned laboratories (see Section 5.4), and these assigned case numbers and laboratory numbers to the samples. The EPA Region X Laboratory also assigns laboratory numbers for samples sent there.

TABLE 3 C1 AND TDS RESULTS

We1	1#	Depth	Lab #	C1(mg/1)	TDS (mg/1)
01	Water	Shallow	45150	101	1232
01	Water	Deep	45151	77	563
02	Water	Shallow	44154	224	2146
03	Water	Shallow	46153	1500	19832
04	Water	Shallow	44155	127	1716
05	Water	Shallow	44156	1737	20356
06	Water	Shallow	44157	599	6300
07	Water	Shallow	44158	388	2574
08	Water	Shallow	45152	136	3288
09	Water	Shallow	44160	1899	10828
10	Water	Shallow	44161	5968	33074
11	Water	Shallow	45153	1508	12580
11	Water	Deep	45154	1819	14650
12	Water	Shallow	44159	150	1952
13	Water	Shallow	44150	49	568
14	Water	Shallow	44163	2553	19852
15	Water	Shallow	45164	1670	9406
16	Water	Shallow	44164	1144	14712
17	Water	Shallow	45155	3394	19652
17	Water	Deep	45156	782	4636
18	Water	Shallow	45163	386	2254
19	Water	Shallow	44151	205	1782
20	Water	Shallow	44165	739	3340
21	Water	Shallow	44166	1202	4626
22	Water	Shallow	45157	396	2062
22	Water	Deep	45158	2202	6128
23	Water	Shallow	45162	590	3456
24	Water	Shallow	44167	11	652
25	Water	Shallow	45159	303	1170
25	Water	Deep	45160	34	280
26	Water	Shallow	45161	814	2026
27	Water	Shallow	46150	768	3544
28	Water	Shallow	46151	5447	18564
29	Water	Shallow	46152	2548	10780
30	Water	Shallow	51150	5	144
Tran	nsfer Bla	nk	44152	1 u	5
Tran	sport B1	ank	44153	ī u	8

Shallow = 6-16' Deep = 26-30'

u = less than limit of detection

TABLE 4
CONDUCTIVITY AND PH READINGS

200	Well #		рН	Conductivity (Micromhos)
	1A (shallow)	6.70	2000
		deep)	7.55	1400
	2	deep)	6.58	35.5
	2 3		13.00	>7500
	4			1700
			6.68	
	5		9.36	>7500
	6		7.50	>7500
	7		No Data	No Data
	8		No Data	No Data
	9		6.80	4800
	10		4.58	>7500
	11A (shallow)	4.84	5500
	11B (deep)	4.79	>7500
	12		No Data	No Data
	13*		6.42	No Data
	14		5.15	>7500
	15		No Data	No Data
	16		5.61	>7500
		shallow)	6.26	1100
		deep)	5.02	4000
	18	чесь)	No Data	No Data
	19*		6.30	No Data
	20		7.53	3300
	21			
		ab alla)	No Data	No Data
		shallow)	6.55	420
		deep)	5.96	4500
	23		6.79	4500
	24		No Data	No Data
		shallow)	6.47	1600
		deep)	6.68	300
	26		6.33	1700

^{*}Off-site wells.

shallow well (12-16') deep well (28-30') Sampling procedures at the site were documented in a field log book. All containers were labelled and tagged. Samples going to the contract laboratories were accompanied by an Organic Traffic Report form or Inorganic Traffic Report form, and a copy of the Chain of Custody Record. Samples going to the Region X Laboratory were accompanied by an Analysis Required form, a Field Data Sheet and a Chain of Custody form. A summary of sample documentation is included in Appendix D Part II.

All containers were sealed with fiber tape; the outsides of liquid filled bottles were marked with grease pencil to indicate the level of liquid originally in the bottle. Sample containers going to the contract laboratory were packed in vermiculite inside a 4-mil polyethylene bag. This bag in turn was packed in an outer bag containing ice. The bags were placed inside ice chests that were sealed with fiber tape and custody tape. Packaging met the requirements of the National Enforcement Investigation Center (NEIC, 1980). Sample containers going to the EPA Region X Laboratory were placed in ice in plastic bags and packed in cardboard boxes sealed with fiber tape and custody tape. Ice chests were shipped via Federal Express, Inc., other samples were shipped via Kitsap Delivery Service, Inc.

All samples remained in the custody of the Field Investigation Team (FIT) of Ecology and Environment, Inc., until delivered to the respective shippers.

5.6 Quality Assurance Program

All sample containers were prepared under contract to the EPA by Ecology and Environment, Inc., 195 Sugg Road, Buffalo, New York. As a check on the containers and field procedures used to collect ground-water samples, distilled water filtered through activated charcoal was used to make up "transport" and "transfer" blanks of "organic-free water." A transport blank is one filled at the EPA laboratory, taken into the field and shipped to the contract laboratory. A transfer blank is one filled at the EPA laboratory, taken into the field and then transferred with a clean stainless steel bailer into clean sample containers which are then shipped to the contract laboratory.

In addition, two clean 8-oz. wide mouth glass jars of the type used to collect soil samples were shipped to each of the contract laboratories to be rinsed with purified water so that the rinsate could be analyzed. Samples of the water used by the driller in drilling cable tool holes and of the pea gravel used to gravel pack the wells were also submitted for analysis.

All data from the contract laboratories were reviewed by the FIT for completeness and checked for correct procedures, instrument performance (gc/ms calibration), and recoveries (surrogate and matrix spike). Standard run checks and method blanks were checked against sample results and sample retention times; mass spectral data were reviewed. Checks on the calculations of the quantities of the various priority pollutants were made especially in the case where high values were re-

ported. All of the information was documented on forms provided by the EPA Region X Laboratory (Appendix E Part II).

Estimates of the quantities of the tentatively identified compounds (Appendix B Part II), were made by the FIT chemist, as quantification of these compounds is not required under the contract specifications of the contract laboratories.

6.1 Introduction

Because of the number of samples (170, with blanks), and the large number of parameters checked, it is impossible within the scope of this report to discuss them all. Selected samples, generally those most contaminated, are discussed, together with the blanks and the background well (Well 30).

The transport blank, which was supposedly organic-free water and went unopened from the EPA laboratory to the contract laboratory, shows four volatile organics at trace concentrations (<5 to 20 ug/1), and trichloroethene at 76 ug/l. These could have been in the water or from the container. The transfer blank, which consisted of the same water run through the bailer into a fresh container, showed no volatiles, but picked up 140 ug/l of zinc. It seems likely that the volatiles were in the water but that the zinc came off the bailer. For this reason, as a precaution, only levels of zinc above 700 ug/l will be regarded as clear indication of contamination in water. The rinsate from empty soil sample bottles showed insignificant levels of some metals, but had 88 ug/l of methylene chloride. Although this may be from the laboratory rather than the container, levels of methylene chloride in a soil sample of less than 500 ug/kg will be considered questionable evidence of contamination. In general, contaminants in groundwater or soil found at levels less than five times these found in the appropriate blank are regarded as suspect and are shown in parentheses on the tables.

The pea gravel used by the driller in well construction showed traces of some metals and cyanide, but the potential impact on ground-water from the wells is negligable. The City of Kent water used by the driller was sampled and shows low levels of impurities. Only methylene chloride was significant (56 ug/l), and again may have come from the laboratory, but levels of methylene chloride of less than 250 ug/l should be regarded as suspect, where found in groundwater.

Conductivity and pH of groundwater can be useful measures of inorganic ions in the water and of the presence of acids or alkalies. These parameters were monitored for most of the on-site wells while they were being sampled (Table 4). For conductivity the numbers range from 35 to >7500 micromhos. Uncontaminated groundwater at Lakewood, Washington, for comparison, ranged from 130-290 micromhos and any figure over 1000 would indicate pollution. The pH values ranged from 5.02 to 13.00, with the later being classifiable as a corrosive waste by RCRA criteria (cf. Federal Register, Vo. 45, No. 98, p. 33122, May 18, 1980).

Because of questions raised about organics, mainly the pesticide and base/neutral extractibles groups, being carried by sediment into groundwater samples, particular note should be taken of water samples from those wells installed where the soils were heavily contaminated with these organics. The water in these wells show very low or no levels of these compounds and is evidently largely free of contaminated sediment.

6.2 Summary of Results

Because of the high levels of contamination encountered, generally only those instances where the soil exceeded 1000 mg/kg (ppm) dry weight of inorganics, or 1000 ug/kg (ppb) of organics are discussed. For the same reason only levels above 1000 ug/l of organics or inorganics in groundwater will be referred to, except when comparison with blanks or the background well (Well 30) is called for. These levels have no regulatory significance, but are used as indicators of gross contamination.

In all, 87 priority pollutants were detected on or close to the site, 67 of them in quantifiable levels. Twelve other hazardous materials were noted, 11 at quantifiable levels. Twenty-one of those compounds are considered carcingens and 28 are considered suspected carcingens.

One or more inorganic priority pollutant exceededs 1000ppm in soil in 59 out of 130 samples (45%) and exceeded 1000 ug/l in groundwater in 28 out of 35 wells (80%). The percentage of samples in which organic priority pollutants exceeded 1000 ug/l in water or 1000 ug/kg in soil are 67.6% and 38.5%, respectively. Twenty out of 29 shallow wells and three out of five deep wells had one or more organic priority pollutants exceeding 1000 ug/l and nine out of 20 surface soil samples and 41 out of 110 borehole soil samples had one or more priority pollutants exceeding 1000 ug/kg.

Nineteen soil samples were classifiable as hazardous waste by RCRA definition, as were seven groundwater samples. Contaminant loading in soil and water both on-site and downgradient from it showed marked contamination in every case, ranging up to soil containing levels of priority pollutant metals of 9% and more.

It is clear that there has been widespread spillage, or leaking, or dumping of organic chemicals at this site, including material containing at least 36 priority pollutants in relatively high levels.

There is no doubt that the Western Processing site has created serious soil and groundwater contamination, and is contributing to air and surface water contamination.

6.3 Inorganics

The total dissolved solids (TDS) and chloride results (Table 3) are a good general index of pollution. When compared to Well 30 as background, all the on-site or near site wells are at least twice as high in chloride and TDS and range up to 1000 times greater in chloride at Wells 10 and 28 and over 100 times greater in TDS in Wells 3, 5, 10, 11, 14, 16, 17 and 28.

Of the inorganics measured, aluminum, iron, manganese and boron are relatively common elements. Water from 21 wells exceeded 10,000 ug/l in one or more of these pollutants and ranged up to 510,000 ug/l, compared to levels of undetected (<200), 4600, 1200 and 1200 ug/l of these elements in the background well, Well 30 (Appendix B Part II).

Of the priority pollutant metals (Appendix A Part I) zinc is the most common. Twenty-one water samples exceeded 1000 ug/l, ranging up to 510,000 ug/l in Wells 18 and 28. For comparison Well 30 had 32 ug/l. Thirty-three soil samples exceeded 1000 mg/kg ranging up to 81,000 mg/kg in surface soil sample No. 5. It seems clear that zinc has been leaching out of the soil into the groundwater.

Other notably elevated metals analyses were: chromium in six wells, with levels up to 65,000 ug/l (in Well 14), copper in eight wells, with a high of 13,000 ug/l (in Well 5), nickel in eleven wells, with a high of 280,000 ug/l (in Well 10). Background levels are, undetected, undetected, and 210 ug/l respectively, (in Well 30).

The two most toxic metals, after mercury, which does not appear to be a problem at this site, are cadmium and lead. These exceed 1000 ug/l in seven wells with lead at 3300 ug/l in Well 3 and cadmium at 60,000 ug/l in Well 10. For comparison the background well (Well 30), showed <1 ug/l cadmium and 21 ug/l lead. Lead in the soil exceeds 1000 mg/kg in 19 samples ranging up to 141,000 mg/kg near surface in Well 16. Cadmium in soils nowhere exceeds 420 mg/kg, but compared to lead a higher proportion of it seems to have leached into groundwater.

Cyanide was found at 35,000 ug/l in Well 5 but was not a wide-spread contaminant at high levels. Background level was undetected, in Well 30.

EP Toxicity tests were performed on the most highly contaminated soils samples (Federal Register, Vol. 45, No. 98, p. 33127, May 18, 1980). This test measures the amount of toxic substance, in this case metal, that will leach out of a specific weight of waste under given conditons. Waste failing the test are hazardous wastes by definition under RCRA. Nineteen soil samples failed the test (Table 5), in six cases groundwater also failed this test. Lead was extracted from one sample at a level 154 times the maximum permitted for waste to be classified non-hazardous. Samples containing chromium were checked for hexavalent chrome, the more toxic form of the metal, but none was found. No sample tested was a hazardous waste by reason of chrome content alone, however.

6.4 Organics

Twenty-nine of the organic priority pollutants exceeded 1000 ug/kg (ppb) in soils or 1000 ug/l in water. Sixty-nine samples from 31 sites are affected.

In the "pesticide" group four different polychlorinated biphenyls (PCBs) were noted in one or more samples, but in other samples the PCBs were grouped as one analysis. Since these compounds adhere strongly to soils it is not suprising that they were not detected in groundwater. In all, 13 soil samples from six well sites, two samples from the berm and two surface soils show high PCB values, the highest being the sample from six to nine feet at Well 15 (19,600 ug/kg).

TABLE 5
EP TOXICITY TEST RESULTS (ug/1)†

		METALS	
 Station	Chromium*	Cadmium*	Lead*
Soils			
Well 3 (6') Well 3 (12') Well 10 (6') Well 15 (9')		1,600 1,200 1,400 1,200	
Well 16 (3') Well 16 (6') Well 16 (9') Well 20 (3') Well 21 (3') Well 21 (6') Well 23 (6')	9,500	4,200 9,600 1,300	770,000 19,000 6,100 27,000 11,000
Berm 3 Berm 7			8,100 6,800
Surface 3 Surface 4 Surface 5 Surface 6 Surface 7 Surface 12		12,000	19,000 7,000 18,000 350,000 220,000 35,000
Water Samples			
Well 10 (15') Well 11 (15') Well 11 (30') Well 14 (15') Well 17 (15') Well 28 (15')	17,000 65,000 32,000 6,100	60,000 4,800 3,900 12,000 4,500 5,600	

 $^{^{\}dagger}$ Concentration of soluble metal in the test extract

^{*}Standard for Chromium = 5,000 ug/l Standard for Cadmium = 1,000 ug/l Standard for Lead = 5,000 ug/l

In one soil sample (Well 6, 0-3ft) aldrin and dieldrin were found (2,860 ug/kg and 3340 ug/kg respectively). This is the only sample containing markedly elevated pesticide levels.

Of the base/neutral extractibles 16 were noted at levels greater than 1000 ug/kg (1 ppm). All 18 samples affected were soils, the most contaminated of which was surface soil sample #8 with approximately 5.1% by weight of priority pollutants, including 2.0% of phenanthrene and 1.6% pyrene.

The sample results in excess of 1000ug/kg (1ppm) are listed in Table 6.

TABLE 6 - BASE/NEUTRAL EXTRACTIBLES (>1ppm)

	Number of	Highest
Compound	Samples	Value Found
Acenaphthene	3	5090 ppm
Hexachloroethane	1	1.8 ppm
Phthalates (as a group)	14	860 ppm
Benzo-[a]-anthracene	1	200 ppm
Fluoranthene	7	234 ppm
Naphthalene	3	5.2 ppm
Benzo-k-fluoranthene	1	130 ppm
Chrysene	4	1210 ppm
Anthracene	1	1.6 ppm
Fluorene	4	8600 ppm
Phenanthrene	9	20,000 ppm
Pyrene	8	16,000 ppm

The acid extractibles are all phenolics and of these six were found at levels above 1000 ug/l or 1000 ug/kg. The most important compound was phenol itself which was found in 12 wells and 13 soil samples. The highest concentration was in Well 27 which had a suprising 4,100,000 ug/l. Of the soil samples the most contaminated, (12-15 feet, Well 22), contained 65,000 ug/kg.

To summarize the highest levels of phenolics: pentachlorophenol was found in two soil samples including a surface sample with 17,000 ug/kg; 2,4-dichlorophenol was found in five soil samples, the highest level found being 7900 ug/kg between three to six feet in Well 10; 2,4-d-methylphenol was in two wells, the higher level being 1100 ug/l in Well 12, and in six soil samples including a surface soil containing 11,000 ug/kg; 2-nitrophenol was found off-site in Well 27 in the extraordinary concentration of 1,300 mg/l; and lastly, 4-nitrophenol was found in Well 15 at 3200 ug/l.

After the base/neutral extractibles, the volatiles group is the most heavily represented. Nine different priority pollutants occur at levels greater than 1000 ug/l or 1000 ug/kg. The highest level of any volatile found was 720,000 ug/l of methylene chloride in Well 15. Methylene chloride is also found at high levels in 12 other wells and nine soil samples. Trichloroethene is even more widespread, being found in 18 wells and eight soil samples. The most contaminated well is Well 15 again, with 210,000 ug/l. The most contaminated soil is also from Well 15 at three to six feet (580,000 ug/kg).

Toluene is found in water fromseven wells within the range of 1000-22,000 ug/l with the highest level in Well 17. Of the six soils samples in the >1000 ug/kg range the highest is also from Well 17 at three to six feet, and registered 394,000 ug/kg.

Chloroform is found in that same sample (Well 17, 3-6 feet), at 18,000 ug/kg, and in five groundwater samples, with the highest reaching 27,000 ug/l (Well 15). This well has the highest level for 1,1,1-trichloroethane at 340,000 ug/l while three others have high values also. Not suprisingly, of two soil samples contaminated with the same compound the higher is from Well 15 at three to six feet, (174,000 ug/kg). 1,1-dichloroethane is found at high levels only in two water samples, the higher again being from Well 15 (33,000 ug/l). Trans-1,2-dichloroethene is also found at high levels only in water. Of five wells affected the highest is Well 21 (390,000 ug/l). Lastly, ethylbenzene is found at significant concentrations in three soil samples, the worst being from Well 17 at three to six feet (37,000 ug/kg).

Besides these priority pollutants, which were selected as indicators of industrial pollution as the result of a consent agreement requiring the EPA to create a list of the most common such materials, there are many other hazardous substances. Twelve of these materials, acetone, benzoic acid, benzyl alcohol, 2-butanone, dibenzofuran, 2-hexanone, 2-methyl napththalene, 2-methylphenol, 4-methylphenol, styrene, 2,4,5-trichlorophenol and o-xylene, were noted; one or more occuring in 69 soil samples and 23 groundwater samples (Appendix B Part I). For example, acetone occurs in soil in levels up to 17,000 ug/kg (Well 17), and in groundwater in the same well is found at 130,000 ug/l. 2-butanone is also found in the soil in Well 17, at up to 580,000 ug/kg, and in the water at 460,000 ug/l.

Numerous other compounds were identified with varying degrees of assurance, and their levels estimated by the FIT (see Tentatively Identified Compounds, Appendix B Part For example, 2-oxazolidinone, 2-(2hydroxypropyl)-5-methyl occurs quite commonly, reaching a level of 60,000 ug/kg (Well 9, soil, 6-9 feet).

6.5 Carcinogens

A number of known and suspected carcinogens were detected on and around the Western Processing site. The 21 known carcinogens found are listed on Table 7. The 28 suspected carcinogens, including two not on the priority pollutant list, are listed on Table 8.

6.6 Total Contaminant Levels

To give a better idea of the overall impact of the site, tables were constructed showing the total load of contaminants in selected water and soil samples. Analyses from six on-site wells, one background well, (Well 30), and one downgradient well, (Well 28, Fig. 3),

TABLE 7 KNOWN CARCINOGENS* ON EPA PRIORITY POLLUTANT LIST

Pollutants Found On-Site	Pollutants Not Found On-Site
Arsenic Benzene Benzo(a)anthracene Benzo(b)fluoranthene	Acrylonitrile Benzidine Bis (Chloromethyl) Ether N-Nitrosodimethylamine
Benzo(a)pyrene	N-Nitrosodi-N-Propylmine
Beryllium	TCDD
Cadmium	Toxaphene
Carbon Tetrachloride	
Chloroform	
Chromium	
1,2-Dichloroethane	
Gamma BHC (Lindane)	
Nickel	
PCB-1016	
PCB-1221	
PCB-1232	
PCB-1242	
PCB-1248	
PCB-1254	
PCB-1260 Vinyl Chloride	

^{*}National Toxicology Program

TABLE 8 SUSPECTED CARCINOGENS* ON EPA PRIORITY POLLUTANT LIST

Pollutants Found On-Site

Pollutants Not Found On-Site

Acenaphthene Acenaphthylene Anthracene Benzo(k)fluoranthene Benzo(ghi)perylene Bis(2-Chloroethyl)ether Chlorobenzene Chrysene 1,2,5,6-Dibenzathracene (Perylene) Dieldrin 4,6-Dinitro-O-Cresol Fluoranthene (Benzo(k)fluorene) Fluorene Heptachlor Hexachlorobutadiene Hexachlorocyclopentadiene Hexachloroethane Indeno (1,2,3-CD)pyrene Naphthalene N-Nitrosodiphenylamine Phenathrene Pyrene 1,1,2,2-Tetrachloroethane

2,4,6-Trichlorophenol
1,2-Trans-Dichloroethylene

Non PP Hazardous Materials

Alpha BHC
Chlordane
2-Chloroethyl Vinyl Ether
2-Chloronaphthalene
3,3-Dichlorobenzidene
Heptachlor Epoxide
P-Chloro-N-Cresol

Styrene

Dibenzofuran

(partial list)

*Soderman, J. V. 1982

were tabulated (Table 9). Thirty-two priority pollutants were found in the on-site wells in measurable quantities. Twenty priority pollutants and five hazardous materials were found in the downgradient well, all of which were found on-site. Only four priority pollutants were found in significant levels in the background well. Total contaminant levels (both priority pollutant and others) are listed in Table 9, together with chloride, total dissolved solids and pH (where measured).

Priority pollutants are usually measured in parts per billion in water samples. Some are thought to have effects on human health even at these levels in drinking water. Carcinogens are generally thought to have no threshold below which they have no effect. Of the on-site priority pollutants in Table 9 eight are considered carcinogens and four are suspected carcinogens.

Total contaminants in the selected wells ranged from 53,323 ug/l to 1,359,982 ug/l (averaging 709,393 ug/l). The background well, in contrast, has a total contaminant load of 956 ug/l. Interestingly, the well most highly contaminated with priority pollutants is Well 27, outside the site. Because of the high levels of phenol and 2-nitrophenol the priority pollutant loading is 5,683,500 ug/l.

The analytical data for the soil samples shows total contaminant levels even higher than for water, particularly in the case of the inorganics. Selected soil samples (Table 10) shows lead up to 8.4% in one sample, zinc up to 8.1%, and several organics above the 1% level. Total contaminant loads for these samples range from 0.02% to an astonishing 9.93%.

The distribution of hazardous material in the soils and ground-water shows some interesting patterns. Priority pollutant metals in surface soils and average levels in borehole soils exceed 1000 ppm over most of the site (Fig. 8). Only at the northwest corner of the site around Wells 1, 2, 4, 6, 7, 8, 11 and 12, and at the south end of the site around Wells 24, 25 and 26 are lower levels encountered. This accords quite well with the distribution of total priority pollutant metals in shallow groundwater (Fig. 9). This is in excess of 100 mg/l off the northeast corner of the site in Wells 19 and 29, and in the middle of the site around Wells 10, 11, 14, 17, 18, 27 and 28. Levels are suprisingly low below the south part of the site and also in Well 16. The top 15 feet of soils in this well average an astonishing 4.6% lead, the highest in any well, but the lead level in the groundwater is only 470 ug/l.

The sum of all the volatile priority pollutants in soils from each well suggests that there are at least two major spill locations onsite, at Wells 15 and 17 (Fig. 10). The distribution of volatiles in the groundwater suggests that there may well be several more spills, upstream of Wells 21, 27, and possibly 14, for example (Fig. 11).

Non priority pollutant solvents show similar distribution with the exception of Well 15 (Fig. 12).

TABLE 9

DATA SUMMARY FOR SELECTED WELLS *

Carcinogin Code **	Parameters	Well #5 (Shallow)	Well #15 (Shallow)	Well #17 (Shallow)	Well #17 (Deep)	Well #21 (Shallow)	Well #22 (Deep)	Well #28 (Shallow)	Well #30 (Shallow)
3	Dissolved Metals	(ug/1)	(ug/1)	(ug/I)	(ug/L)	(ug/1)	(ug/I)	(ug/I)	(ug/1)
0 0	Chromium	400	170	32,000	680	160	22	6,100	
0 0	Copper Nickel	13,000	3,400	7,200 26,000	3,200	320	280	77,000	210
	Zinc	(650)	(260)	360,000	160,000	(390)	(30,000)	510,000	(32)
0 0	Arsenic Antimony	2	-	- 32		_	32 26	- 25	-
	Selenium	-		- 0.07	- 0.07	- 0.00	4.1	2 1	- 0.7
0 0	Mercury Cadmium	0.28	(11)	0.83 4,500	(800)	0.28	46 77)	5,600	0.3
	Lead Silver	7 <u>-</u>	-	1,600	210	:	-	6.5	21
	Miscellaneous								
	Cyanide	35,000	(1,200)	(92)	-	-	(36)	920	-
	Acid Extractibles								
0	2,4,6 Trichlorophenol	8,800	-	-	-	-	-	_	-
	2,4 Dimethylphenol 2-Nitrophenol	520			300	190	-		
	4-Nitrophenol	-	3,200	-	-	-	Ī.,	-	-
	Pentachlorophenol	1,400	-		700	- 000	-	4,000	-
	Phenol 2,4 Dichlorophenol	270,000	4,900	91,000	380	10,000	-	220	-
	Base-Neutrals								
	1,2-Dichlorobenzene	-	160	- ,	-	-	-	-	
	Bis(2-Ethylhexyl) Phthalate Isophorone		-	1	-	-	-	540	544
	Volatiles								
0 0	Benzene	77		2,200	-			<u>-</u>	-
0 0	1,2-Dichloroethane	2,900	16,000	1,700	-	-	_	100	-
	1,1-Dichloroethane	320	33,000	-	-	-	<u> </u>	-	-
0 0	Chloroform I,I Dichloroethene	130 87	27,000	12,000	130	-	7,800	-	-
0	Trans-1,2-Dichloroethene	-	-	-	-	390,000	-	-	-
	Ethylbenzene Methylene Chloride	23,000	720,000	42,000	1,200	100,000	-	5,400	
	Fluorotrichloromethane	-	-	920	-	-	-	-	-
	Tetrachloroethene Toluene	4,100	-	22,000	430	-	-	50	-
	Trichloroethene	16,000	210,000	42,000	830	170,000	17,000	840	-
0 0	Vinylchloride	-	•	-		360	-		•
	Pesticides								
	Aldrin	_		_	-		-	3.3	-
	Dieldrin Heptachlor	:	:	-	-	-	-	3.6 3.29	-
	Non-Priority Pollutant Hazardous								
	Wastes					5,500	_	8,000	_
	2-Methylphenol 4-Methylphenol	980 3,000	320	64,000	320	4,900	_	600	-
	2,4,5-Trichlorophenol	8,800	-	-	-	-	-		-
	Acetone 2-Butanone	6,100	-	130,000	12,000	-	-	2,820 2,500	_
0	Styrene	290	-	-	-	-	-	-	-
	O-Xylene Benzoic Acid	- 102	-	-	- 102	-	-	1,200	-
	Indicator Parameters	(mg/I)	(mg/1)	(mg/I)	(mg/l)	(mg/l)	(mg/1)	(mg/I)	(mg/I)
	Chloride	1,737	1,670	3,394	782	1,202	2,202	5,447	5 144
	Total Dissolved Solids	20,356	9,406 No Data	19,652	4,636	4,626 No Data	6,128 5.96	18,564 No Data	No Data

^{*} See Appendix for complete tabulation

^{** 0 0 =} Confirmed carcinogin (Listed on NTP list of "88" - 1982)

^{0 =} Highly suspect based on frequency of positive results in Tab animals/mutagenic screening, etc.

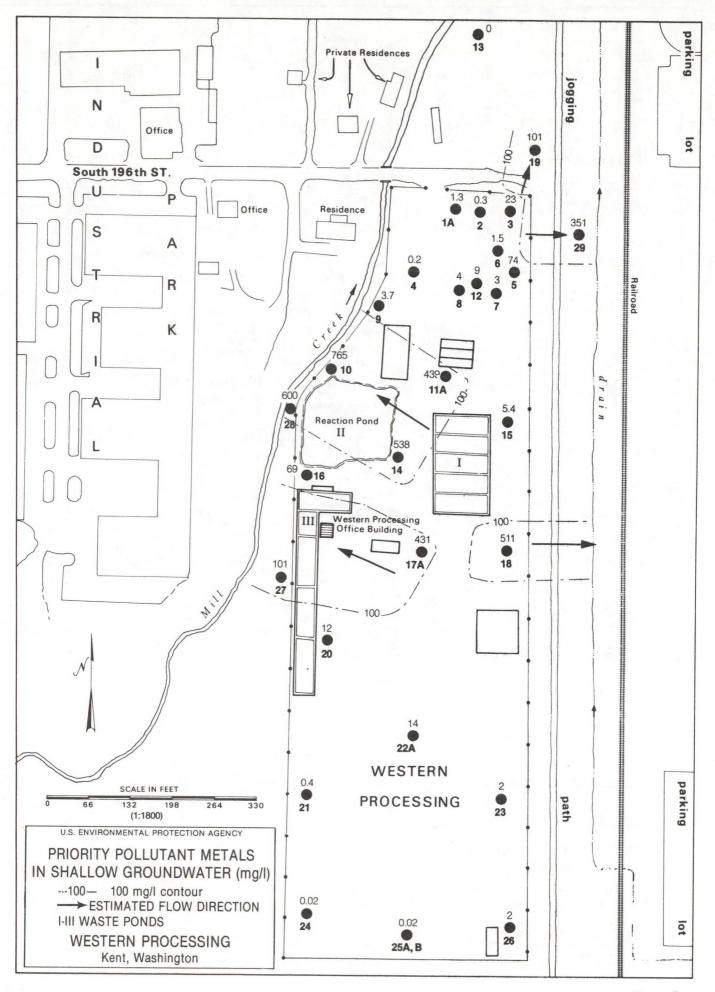


Figure 9

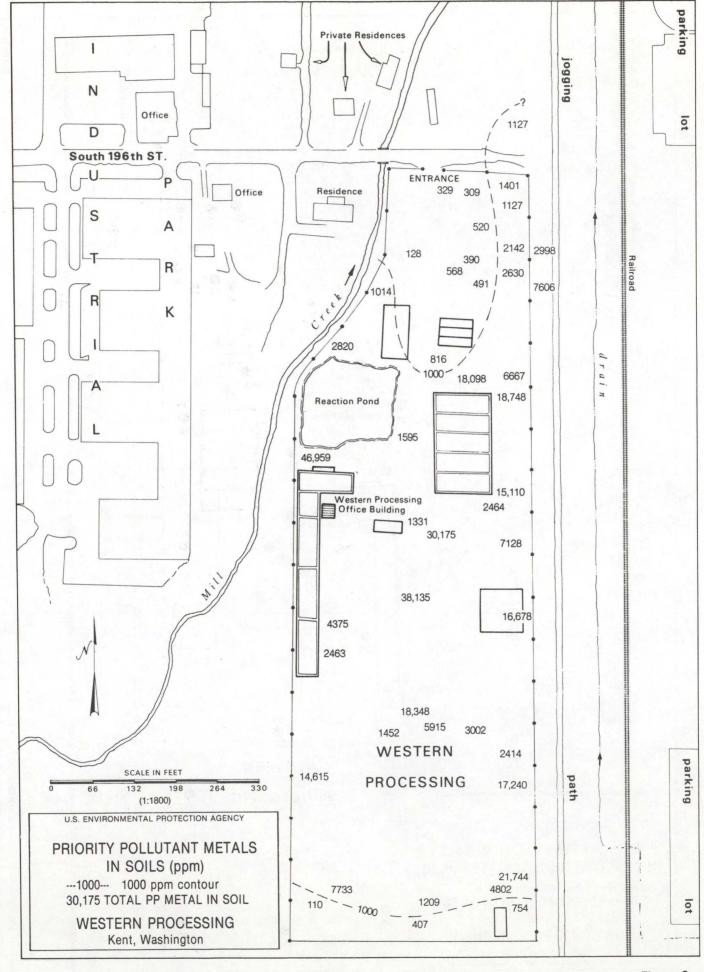


Figure 8

TABLE 10
DATA SUMMARY FOR SELECTED SOIL SAMPLES*

arcinogen Code **	Parameter	WELL 6 - 3' SAMPLE	WELL 10 - 9' SAMPLE	WELL II - I2' SAMPLE	WELL 15 -	WELL 16 - 3'SAMPLE	WELL 17 - 9' SAMPLE	WELL 17 - 12' SAMPLE	WELL 21 - 3' SAMPLE	WELL 22 - 9' SAMPLE	BERM #4	BERM #7	BERM #8	BERM #9	SURFACE SAMPLE #5	SURFACE SAMPLE #8	SURFACE SAMPLE #10	SURFACE SAMPLE #11	SURFACE SAMPLE #12
N	Metals	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)
0 0	Chromium	6,240	148,000	100,000	7,600,000	19,000	140,000	150,000	370,000	3,900,000	250,000	160,000	1,600,000	5,300,000	190,000	60,000	55,000	39,000	450,000
0 0	Copper	26,000	280,000	79,000	5,100,000	150,000	66,000	45,000	500,000	335,000	180,000	250,000	590,000	890,000	580,000	220,000	880,000	200,000	560,000
0 0	Nickel Zinc	5,600 79,000	148,000	43,000	400,000	(13,000)	40,000	(20,000)	37,000	390,000	240,000	160,000	24,000	34,000	57,000	49,000	64,000 820,000	(18,000)	74,000
0.0	Silver	-	-	-	-	-	-	-	-	-	-	-	-	-,150,000	6,100	-	-	-	-
0 0	Arsenic Antimony	6,300	(2,200)	-	5,800	102,000	(4,400)	(2,000)	6,500 (6,700)	109,000		(2,400)	-	2	(6,000)	8,500	(2,000)	-	(4,300) (4,500)
	Selenium	-	-	-	1,800	-	-	-	-	-	(1,000)	(900)	-	-	-	-	-	-	-
0 0	Mercury Cadmium	330	25,000	2,100	170,000	20,000	13,600	8,000	226,000	402,000	49,000	71,000	140	22,000	420,000	16,000	4,300	1,700	10,100
	Lead	20,000	18,000	280,000	1,500,000	84,000,000	87,000	39,000	6,400,000	24,800,000	1,090,000	5,100,000	230,000	170,000	17,000,000	870,000	5,900,000	190,000	1,300,000
м	Miscellaneous																		
	Cyanide	10,100	-	22,000	55,600	-	-	(2,700)	-	179,000	-	-	-	-	-		(1,200)	13,000	15,000
A	Acid Extractibles																		
	2,4, Dichlorophenol	-	5,200	-	-	-	-	-	1,900	-	-	-	-	-			-	-	-
	2,4, Dimethylphenol Pentachlorophenol		-	-	-	-	-	-	-	-		-	-	-		17,000		1,070	7,700
	PhenoI	-	27,000	-	-	-	12,000	-	-	-	-	-	-	-	-	19,000	-	1,170	2,600
P	Pesticides																		
	Aldrin	2,860	-	5	-	-	-	-	-			-	-	-	-	-		-	-
	Dieldrin Heptachlor	3,340			-	-	-	-	-	-	-		-	-	- 145		-	-	
	G-BHC (Lindane)	-,950		-	-		-	-	-		-	2	-	-	- 34		-	-	-
0 0	PCB - 1016 PCB - 1248		-	-	3,160	-	-	-	-	-	-	-	-	2 046	-		-	-	-
0 0	PCB - 1254		-		-	-	-	-	-	-	- 2	-	-	2,046	-	-		3,300	2,912
0 0	PCB - 1260		-	-	1,710	-	-	-	-	-	-	-	2,030	-		-	-	-	-
В	Base Neutrals																		
0	Acenaphthene 1,2 Dichlorobenzene	:		8,700	565,000	-	-	-	-	-	-	-			-	5,090,000	5	-	4,700
0	Fluoranthene	-	-	7,300	-	-	-	-	7,700	-	-	-	-	-	-	15,000	59,000	234,000	16,000
0	Naphthalene Bis(2-Ethylhexyl) Phthalate	-	-	5,200	-	-	-	-	-	-	-	-	-	-	-	6,200,000	120,000	627,000	18,000
	Benzyl Butyl Phthalate	-	-	29,900 9,100	-	-		-	3,500	410,000	-	-	-	-	-	-	500,000	860,000	12,000
0.0	Di-N-Butyl Phthalate	-	-	-	-		-	-	7	-	-		-	-	-	-	-	-	2,600
0 0	Benzo(a)anthracene Benzo(b)fluoranthene	-	-	-	-	-			4,000	-	-		-	-	-	884,000		76,000	4,400
0	Benzo(k)fluoranthene	-	-	-	-	-	_		-	-	-	-	-	-	-	130,000	-	-	-
0	Chrysene Anthracene	-	-		-		-	-	2,500 1,600	-	-	-	-	-	-	1,210,000	-	85,000	5,100
0	Fluorene			16,900	-	-	-	-	-	-	-	-	-	-	-	8,600,000	-	62,000	5,100
0	Phenanthrene Pyrene			62,400		-	. :	-	7,000	-	-	-	-			20,000,000	190,000	763,000 283,000	18,000
	folatiles																		
	Tetrachloroethylene																		
	Toluene	-		81	72,000	-	200 000	36	-	- ,	-	-	-	-	-	-	-	-	-
0 0	Trichloroethylene Benzene	-	-	312	580,000	-	280,000 350,000	19,900	-	43	37	-	(21)		-	-	-		
0 0	I,I,I-Trichloroethane	-		18.2	174,000	-	-	199.5	-	-	-	-	-	-		-	-	-	
0 0	I, I-Dichloroethane	-	-	- 10.2	-	-	16,000	332.5	-	-	-	-			-	-		-	-
0 0	Chloroform Ethylbenzene	-	-	- 143	-	-	18,000	505	-	-	-	-	-	-	-	-	-	-	-
	Methylene Chloride Fluorotrichlormethane	-	22	143	30,000	116	29,000 49,000	1,596	21	28 30	25.52	-	-	- 13	14.9	- 51		- 63	Ξ
				-	-	26	-	36	-	-	-	-		-	-	-	-	25	-
N.	on-Priority Pollutant Hazardous	Wastes																	
	2-methylphenol		-	-	-	-	-	-	-	-	-	-	-		_	7,200	_	760	-
	4-methylphenol Acetone	-	1,000	-	-	-	5,600	-	-	-	-	-	-	-	-	64,000	-	3,000	4,600
	2-butanone	-	1,310	_	-	-	580,000	92,000	-	-	-	-		-		-	-	-	-
	0-xylene 2-Methylnaphthalene	-	-	- "	-	-	24,000	1,100	-	42	-	-	-	_	1	-	-	-	_
0	Dibenzofuran	-	-	-	-	-	2,300	-	-	-	:	-			-	290,000	6,000	36,000	4,800
T	otal Contaminant	162,700	670,732	1,087,288	23 107 070	04 514 170	7 (1)					0. 744 740	7 000 :::				-		
	% of Total Sample	0.02\$				84,514,172				41,725,143		21,744,360	3,000,191	7,608,059	99,276,294	64,910,751	8,676,000		4,941,412
		0.02%	0.07%	0.11%	2.3%	8.45%	0.36%	1.84%	4.81%	4.17%	1.51%	2.17%	0.30%	0.76%	9.93%	6.49%	0.87%	0.43%	0.49%

^{*} See Appendix for complete tabulation.

^{** 0 0 =} Confirmed carcinogen (listed on NTP list of "88" - 1962)
0 = Highly suspect based on frequency of positive results in
lab animals/mutagenic screening, etc.

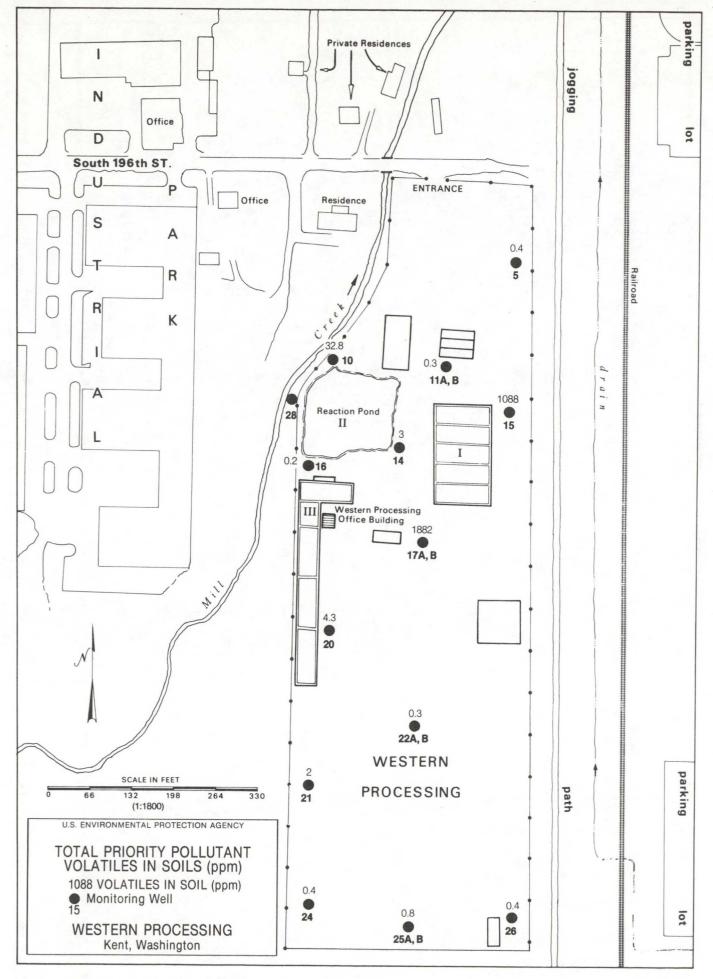


Figure 10

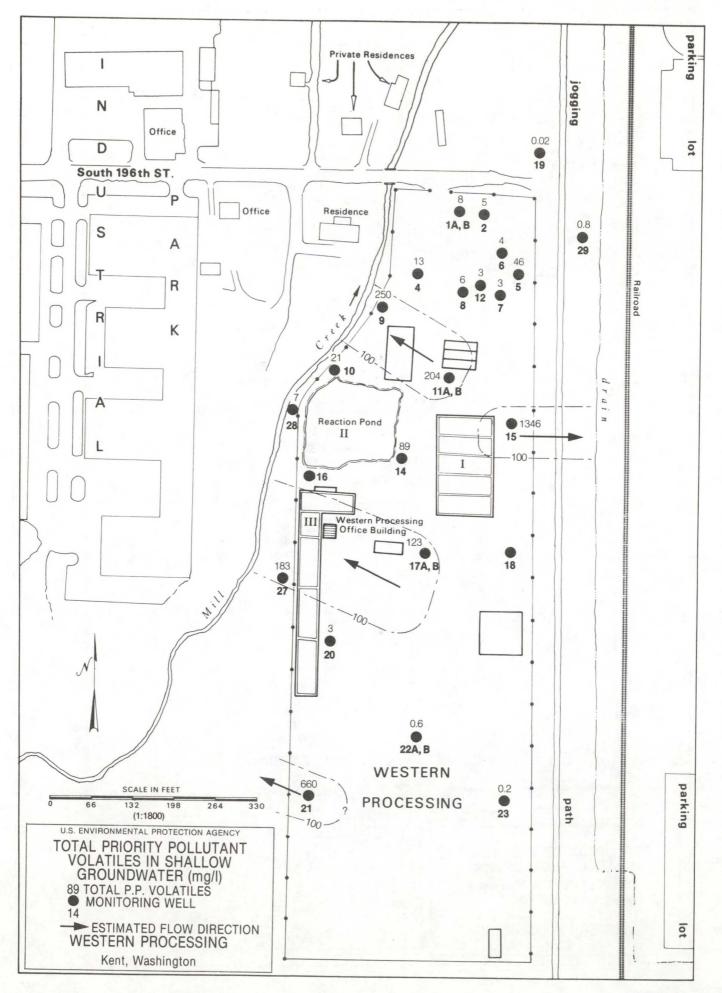


Figure 11

Figure 12

The sum of the total priority pollutant acid extractibles (phenols) found in soil samples, does not yield a clear picture (Fig. 13). Levels of from 2 to 102 ppm are scattered over the site from the south end north to Well 10. The groundwater picture suggests a major source may be the lagoons along the west side of the site, near Well 27. Other sources may be the "Reaction Pond" and burial sites or spills near Wells 17, and 5 (Fig. 14).

Distribution of priority pollutant base/neutral extractibles in soils extends south from Well 11 almost to the south end of the site. Concentrations in the surface soils range from non-detected to 5.8% (Fig. 15), within this area. Evidently these compounds are relatively strongly adsorbed on soils, because only very low levels are found in groundwater.

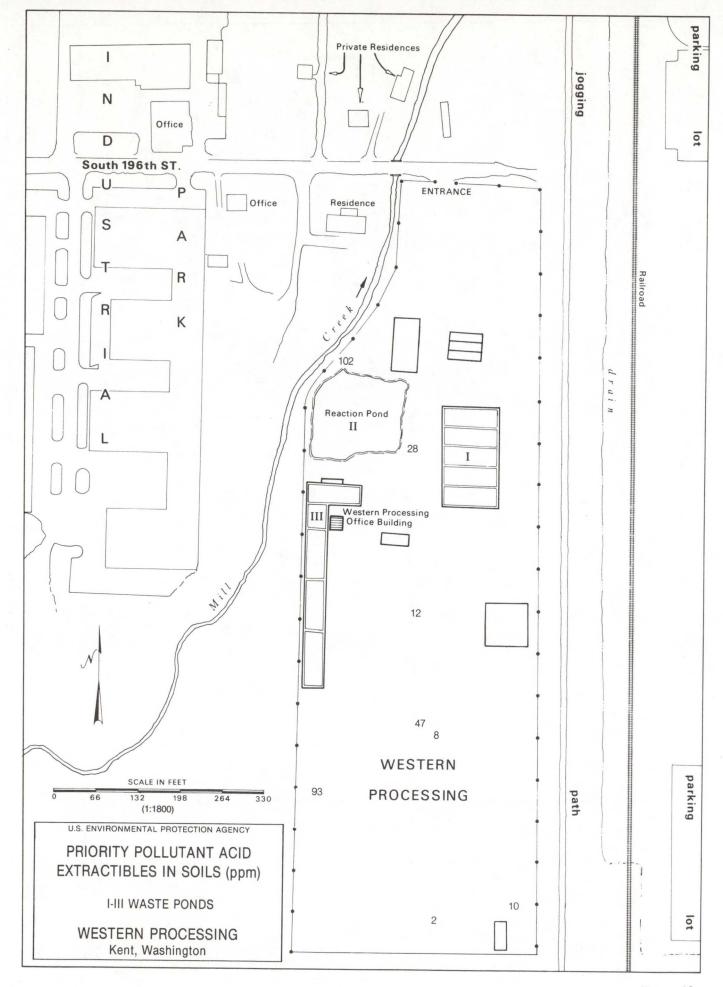


Figure 13

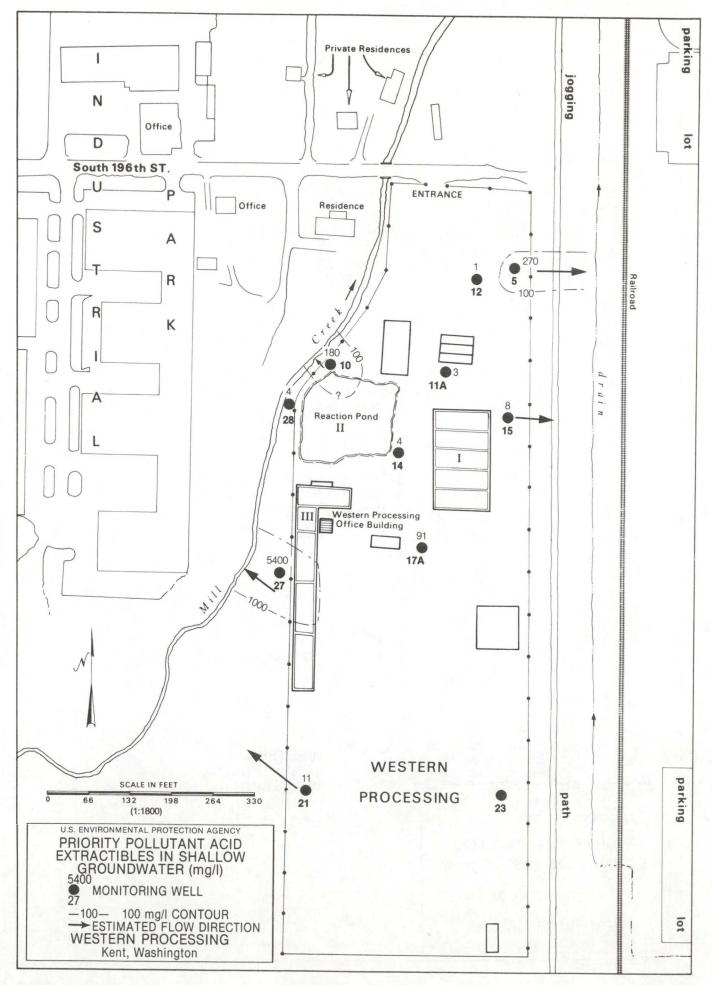


Figure 14

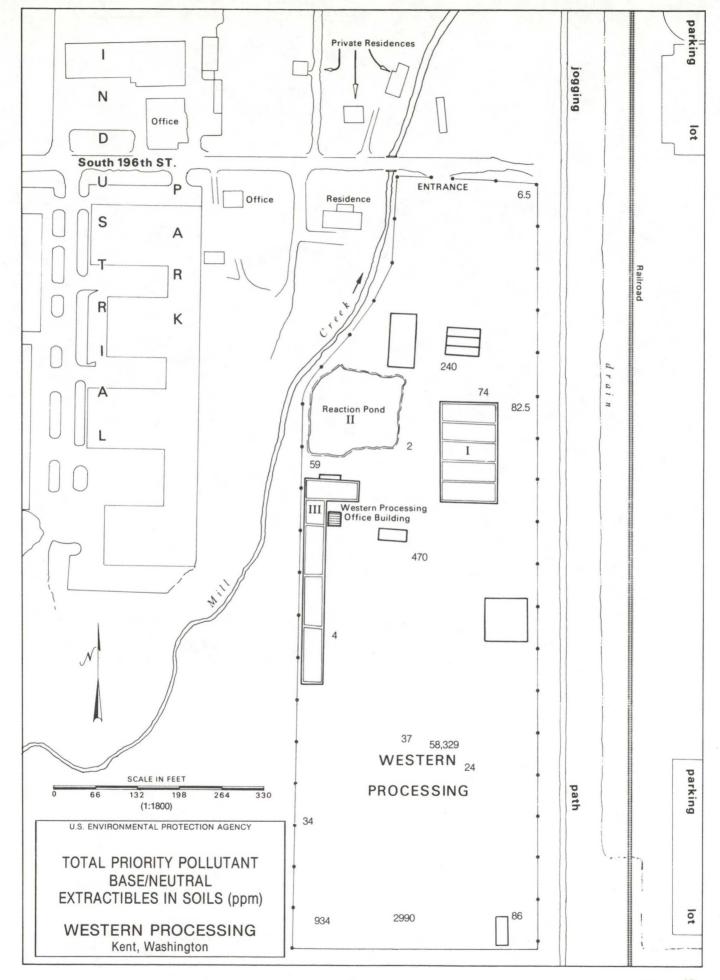


Figure 15

BIBLIOGRAPHY

- Aldis, Hussein, (July 7, 1982), Survey of Drainage and Industrial Development around Western Processing, Inc., Kent, Washington. Memorandum From Ecology and Environment, Inc., to Environmental Protection Agency. TDD 10-8203-04B.
- Lewis, R.J. and R.L. Tatken. eds., 1982 Registry of Toxic Effects of Chemical Substances. U.S. Dept. of HHS, Public Health Service, Center for Disease Control, National Institute for Occupational Safety & Health (NIOSH), Rockville, Maryland 20852. DHHS (NIOSH) Publ. #81-116.
- Luzier, J.E. (1969), Geology and Ground Water Resources of Southwestern King County, Washington, Water Supply Bulletin No. 23, Dept. of Water Resources, Olympia, WA.
- Mullineaux, Donald R. (1970), Geology of the Renton, Auburn, and Black Diamond Quadrangles, King County, Washington. Geological Survey Professional Paper 672.
- National Enforcement Investigations Center (NEIC), 1980, Enforcement considerations for evaluation of uncontrolled hazardous waste disposal sites by contractors [draft]: Environmental Protection Agency.
- National Toxicity Program: Second Annual Report, 1982 List of 88 Known or Suspected Carcinogens. U.S. Dept. of HEW, Public Health Service, Box 12233, RTP, North Carolina 27709.
- Soderman, J.V. ed. 1982 CRC Handbook of Identified Carcinogens and Non-carcinogens: Carcinogenicity-Mutagenicity Database. Two volumes, CRC Press, Inc., LC No. 82-1222.
- U.S. Environmental Protection Agency, Region 10 Report of Western Processing Vicinity Survey May 20-21, 1982.
- U.S. Government Printing Office (GPO), 1979, Guidelines Establishing Test Procedures for the analysis of Pollutants; Proposed Regulations in Federal Register, vol. 44, No. 233, pp. 69463-69575.

 1980,	Federal	Register,	vol.	45,	33122	
 1979,	Federal	Register,	vol.	44,	34408	
1976,	Federal	Register,	vol.	41,	52780	

APPENDIX A PART I 129 PRIORITY POLLUTANTS LIST

129 PRIORITY POLLUTANTS* (WITH CHEMICAL ABSTRACT SERVICE NUMBERS)

METALS		BASE-NEUTRAL EXTRACTIBLES		ACID EXTRACTIBLES	
ANTIMONY	7440-36-0	ACENAPHTHENE	83-32-9	2-CHLOROPHENOL	95-57-8
ARSENIC	7440-38-2	ACENAPHTHYLENE	208-96-8	2,4-DICHLOROPHENOL	120-83-2
BERYLLIUM	7440-41-7	ANTHRACENE		2,4-DIMETHYLPHENOL	105-67-9
CADMIUM	7440-43-9	BENZIDINE	92-87-5	4,6-DINITRO-O-CRESOL	534-52-1
CHROMIUM	7440-47-3	BENZO(A)ANTHRACENE	56-55-3	2,4-DINITROPHENOL	51-28-5
COPPER	7440-50-8	BENZO(A)PYRENE	50-32-8	2-NITROPHENOL	88-75-5
LEAD	7439-92-1	BENZO(B)FLUORANTHENE	205-99-2	4-NITROPHENOL	100-07-7
MERCURY	7439-97-6	BENZO(GHI)PERYLENE		P-CHLORO-M-CRESOL	59-50-7
NICKEL	7440-02-0	BENZO(K)FLUORANTHENE		PENTACHLOROPHENOL	87-86-5
SELENIUM	7782-49-2	BIS(2-CHLOROETHOXYL) METHANE			108-95-2
SILVER	7440-22-4	BIS(2-CHLOROETHYL) ETHER	111-44-4	2,4,6-TRICHLOROPHENOL	88-06-02
THALLIUM	7440-28-0	BIS(2-CHLOROISOPROPYL) ETHER			
ZINC	7440-66-6	BIS(2-ETHYLHEXYL) PHTHALATE		VOLATILES	
		4-BROMOPHENYL PHENYL ETHER	101-55-3		
PESTICIDES		2-CHLORONAPHTHALENE	91-58-7	ACROLEIN	107-02-8
		CHRYSENE	218-01-9	ACRYLONITRILE	107-13-1
ALDRIN	309-00-2	4-CHLOROPHENYL PHENYL ETHER		BENZENE	71-43-2
ALPHA BHC	319-84-6	1,2,5,6-DIBENZANTHRACENE	53-70-3	BIS(CHLOROMETHYL) ETHER	542-88-1
BETA BHC	319-85-7	1,2-DICHLOROBENZENE	95-50-1	BROMODICHLOROMETHANE	15-27-4
GAMMA BHC	58-89-9	1,3-DICHLOROBENZENE	541-73-1	BROMOFORM	75-25-2
DELTA BHC	319-86-8	1,4-DICHLOROBENZENE		CARBON TETRACHLORIDE	56-23-5
CHLORDANE	5103-71-9	3,3-DICHLOROBENZIDINE	91-94-1	CHLOROBENZENE	108-90-7
4,4-DDD	72-54-8	DIETHYL PHTHALATE	84-66-2	CHLOROETHANE	75-00-3
4,4-DDE	72-55-9	DIMETHYL PHTHALATE	131-11-3	2-CHLOROETHYL VINYL ETHER	110-75-8
4,4-DDT	50-29-3	DI-N-BUTYL PHTHALATE	84-74-2	CHLOROFORM	67-66-3
DIELDRIN	60-57-1	2,4-DINITROTOLUENE	121-14-2	CIS-1,3-DICHLOROPROPENE	542-75-6
ALPHA ENDOSULFAN	115-29-7	2,6-DINITROTOLUENE	606-20-2	DIBROMOCHLOROMETHANE	124-48-1
BETA ENDOSULFAN	115-29-7	DI-N-OCTYL PHTHALATE		DICHLOROFLUOROMETHANE	75-71-8
ENDOSULFAN SULFATE	1031-07-8	1,2-DIPHENYLHYDRAZINE	122-66-7	1,1-DICHLOROETHANE	75-34-3
ENDRIN	72-20-8	FLUORANTHENE	206-44-0	1,2-DICHLOROETHANE	107-06-2
ENDRIN ALDEHYDE	7421-93-4	FLUORENE	86-73-7	1,1-DICHLOROETHYLENE	75-35-4
HEPTACHLOR	76-44-8	HEXACHLOROBENZENE	118-74-1	1,2-DICHLOROPROPANE	78-87-5
HEPTACHLOR EPOXIDE	1024-57-3	HEXACHLOROBUTADIENE	87-68-3	ETHYLBENZENE	100-41-4
PCB 1016	12674-11-2	HEXACHLOROCYCLOPENTADIENE	77-47-4	METHYL BROMIDE	74-83-9
PCB 1221	111-042-82	HEXACHLOROETHANE	67-72-1	METHYL CHLORIDE	74-87-3
PCB 1232		INDENO(1,2,3-CD)PYRENE	193-39-5	METHYLENE CHLORIDE	75-09-2
PCB 1242	534-692-19	ISOPHORONE	78-59-1	1,1,2,2-TETRACHLOROETHANE	79-34-5
PCB 1248	126-722-96	NAPTHALENE	91-20-3	TETRACHLOROETHYLENE	127-18-4
PCB 1254	110-916-91	N-BUTYL BENZYL PHTHALATE	85-68-7	1,2-TRANS-DICHLOROETHYLENE	540-59-0
PCB 1260		NITROBENZENE	98-95-3	TRANS-1,3-DICHLOROPROPENE	10061-02-6
TOXAPHENE	8001-35-2	N-NITROSODIMETHYLAMINE	62-75-9	1,1,2-TRICHLOROETHANE	79-00-5
		N-NITROSODI-N-PROPYLAMINE	621-64-7	TRICHLOROETHYLENE	79-01-6
MISCELLANEOUS		N-NITROSODIPHENYLAMINE	86-30-6	TRICHLOROFLUOROMETHANE	75-69-4
		PHENANTHRENE	85-01-8	1,1,1-TRICHLOROETHANE	71-55-6
CYANIDE	57-12-5	PYRENE	129-00-0	TOLUENE	108-88-3
		TCDD	1746-01-6	VINYL CHLORIDE	75-01-4
		1,2,4-TRICHLOROBENZENE	120-82-1		

^{*}LIST COMPILED BY EPA

APPENDIX B PART I
SUMMARY OF ANALYTICAL RESULTS FOR PRIORITY POLLUTANTS

M = COMPOUND PRESENT BUT BELOW THE MINIMUM QUANTIFIABLE LIMIT K = MULTIPLY THE VALUE BY 1,000 KK = MULTIPLY THE VALUE BY 1,000,000 * NON-PRIORITY POLLUTANT

STA	ATION DESCRIPTION		WELL LEPTH N	ITR M NUM	DATE	TIME	AL*	CR	- M E T BA*	AL	S F	A R A		TEF	S	 E*	NI	
		01	3 :	S MJ9301	821007	0900	840	1 1 M	1 10	MI	0.5 M	1 5	—— М	5	MI 400		1 4	MI
		01	6 9	S MJ9302	821007	0915	840	1 36	1 10	MI -	0.5 M		M		1 180		1 14	1
		01	9 3	S MJ9303	821007	0930	2700	1 11.0	24	1	0.5 M	1 5	M	150	1 730		1 52	i
		01		S MJ9304			1800	1 14	1 33	1	0.5 M		MI		11900		1 15	i
		01		M MJ9312			240	1 70		1		Ì	- 1	120	1.500		1 110	1
		01		MJ9311				1	1	1		i	i	120	1 160		1	1
		02		S MJ9313			770	1 10	1 104	i		i	i	210	12200		55	1
		02		S MJ9314	821014	1030	1200	1	1 17	1		i	i	7.0			1))	i
		02		S MJ9315			800	92	1	i		i	i	44	11600		4.8	i
		02	12 9	5 MJ9316	821014	1040	1200	1 21	1	1		i	i	83	1 750		25	ì
		02	15 9	S MJ9317	821014	1045	1700	1 27	1 28	i		i ·	i	79	11220		1 14	1
		C2	SHAL W	MJ9318	821102	1100		1		i		i	i	,,,	1 140		1 200	1
		03	3 9	MJ9319	821014	1155	1200	1 23	76	i		i	i	210	14600		72	
		03	6 9	MJ9320	821014	1205	2400	1 370	1 100	i		i	i	380	14400		1 120	1
		03	9 9	MJ9321	821014	1210	1600	1 93	84	i		i	1	148	17500		1 71	1
		03		MJ9324				12200	İ	i	3.0	i	i	3800	17500			1
		04	3 9	MJ9325	821018	1415	1800	1 12	42	i	0.5 M	1 5	MI		12300		13600	1
		04		MJ9326				1 1.5	27	i	0.5 M		MI		13800		1 4	MI
		04	9 9	MJ9327	821018	1435	2300	1 16	23	i	0.5 M		MI		12900			MI
		04	SHAL W	MJ9330	821102	1500		i		i	0.5	1	1.1	40	1 540		1 160	MI
		05	3 9	MJ9331	821018	1330	1500	1 38	147	i	0.5 M	5	MI	140	14900			A. I
		05	6 5	MJ9332	821018	1330	2700	400	31	i	0.5 M	gr	M		14300		1 133	Mil
		05	9 5	MJ9333	821018	1330	860	1 70	31	i	0.5 M		MI		13500		74	1
		05	12 S	MJ9334	821018	1330	5300	11300	28	i	0.5 M			570	18000		270	1
		05	SHAL W	MJ9336	821103	1400	2300	1 400		i		12300	1.1		K 11900			/
		06		MJ9337				6.24	10	MI	0.5 M		Mil	26	14100			<
		06		MJ9338				1 130	76	1	0.5 M		MI	100			5.6	1
		06	9 S	MJ9339	821018	1050	2200	580	24	i	0.5 M		MI	198	14900		9.7	. !
		06	12 5	MJ9340	821018	1100	2100	69	36	1	0.5 M				13100		21	
		06		MJ9342			2100	40	20	-	U.5 M	1 2	MI	76	12600		32	1
		07	3 5	MJ9343	821014	1415	2400	12	27	1		1	- 1	51	1 340		11100	1
		07	6 9	MJ9344	821014	1412	2200	64	27	1			!	28	14500		4.8	1
		07	9 9	MJ9345	821014	1425	2100	1 150	37	1			1	350	11110		27	1
		07		MJ9348						1			1	160	11900		18	1
		08		MJ9349				260	7.0	1			1	390	920		600	1
		08		MJ9350				24	32	1			1	40	18500		11.2	1
		08		MJ9051				11170	49	ļ			1	170	18500			1
		08	SHAL W	MJ9054	021025	1500	2200	192		1			- 1	87	11700			1
		09	3 C	MJ9055	021100	1000		26		!		150	- 1	340	1 120		570	1
		09					640	25		!			ı	25	45			
		09	0 0	MJ9056	021019	1030	1180	15	7.0	1			1	50	1 380	- 1	41	1
		09		MJ9057				6.6	30	1			1	21	12440		22	1
				MJ9058			870	1.5		1			1		1 410		12.3	1
			SHAL W	MJ9060	021103	1200	380	13		1		72	1		1 245	K	140	1
		10		MJ9061				660	23	1			1	210	12400		41	1
		10		MJ9062				42		1			1	220	1 550		270	1
		10	9 5	MJ9063	821019	1310	1800	148		1			1	280	12300	- 1	148	1

UNITS: LIQUID - UG/L (PPB) DISSOLVED

SOIL - MG/KG (PPM) DRY WEIGHT BASIS FOR ALL QUANTIFIABLE VALUES

M = COMPOUND PRESENT BUT BELOW THE MINIMUM QUANTIFIABLE LIMIT
K = MULTIPLY THE VALUE BY 1,000
KK = MULTIPLY THE VALUE BY 1,000,000
* NON-PRIORITY POLLUTANT

STATION DESCRIPTION		WELL DEPTH	ITR M NUM	DATE	TIME	AL*	CR	- META	L S P	ARAM CO*	E T E R CU	S	NI
	10	12	S MJ9064	821019	1340	4700	1 850				11240	12900	320
	10	15	S MJ9065	821019	1405	1700	1 270	1 16	ĺ	i	1 7.2	12700	1 140
	10	SHAL	W MJ9066	821104	1000	430 K	1 17 K	I	l	15500	16300	1 480 K	1 280 K
	11	3	S MJ9067	821008	1100	540	1 140	1 10 M	0.5 M	1 5 M	11 19	1 330	6.2
	11	6	S MJ9068	821008	1115	1320	1 340	1 17	0.5 M	1 5 N	11 105	11300	1 17
	- 11	8	S MJ9069	821008	1130	970	1 220	1 10 M	0.5 M	1 5 M	11 80	1 770	1 12.1
	11	10	S MJ9070	821008	1145	3300	1 36	1 17	0.5 M	1 5 N	11 460	11000	74
	11	12	S MJ9071	821008	1200	570	1 100	36	0.5 M	1 5 M	11 79	11800	1 43
	- 11	SHAL	W MJ9072	821109	1030	510 K	11400	1	1	12400	14200	1 410 K	1 77 K
	11	DEEP	W MJ9078	821109	1100	420 K	1 770	1		12200	13600	1 425 K	1 69 K
	12	3	S MJ9079	821025	1130	4400	1 15	41		1	1 77	15800	
	12	6	S MJ9080	821025	1140	1100	1 300	1 21	1	1	1 65	12200	1
	12	9	S MJ9081	821025	1200	3900	220	45		1	1 124	13400	1
	. 12	12	S MJ9082	821025	1230	2800	48	1 36		i	1 55	15500	25
	12	15	S MJ9083	821025	1240	3200	79	38		1	1 46	15000	9.7
	12	SHAL	W MJ9084	821103	1200	1900	1 57	1		1	1 120	1 150	620
	13	3	S MJ9085	821027	1310	1800	1 48	41		1	1 123	11800	1 11.2
	13		S MJ9086			1400	7.5	1 17		İ	1 14	11600	1
	13		S MJ9087				1 3.2	1 45	44	i	i	16400	
	13		W MJ9090				i	i .		i	i ·	1 130	390
	14		S MJ9091			1700	1 190	71		7.6	1 137	15000	1 150
	14		S MJ9092				1 210	1 27		İ	1 60	11600	23
	14		S MJ9093				1 130	i		i	1 23	11200	1 15
	14		S MJ9094				1 200	1		i	1 110	12200	49
	14		S MJ9095				360	19		i	1 130	12200	70
	14			821104		66 K	65 K	1		11800	14300	1 39 K	76 K
	15		S MJ9097				1 110	1 130	ĺ	8.6	13700	18600	1 170
	15	6	S MJ9098	821025	1510	19.5K	17600	1 180		1 10.1	15100	1 10.4K	400
	15		S MJ9099			17.9K		1 150		1 12.4	15700	19800	500
	15	SHAL	W MJ9102	821112	1230	930	1 170	1	ĺ	1	13400	1 160	360
	16	3 .	S MJ9103	821020	1310	216	1 19	1	-	1	1 150	1 380	1 13
	16		S MJ9104			2400	600	20		1	1 260	11900	76
	16	9 :	S MJ9105	821020	1345	2100	1 240	1		I	1 59	11700	41
	16		S MJ9106				1 200	1 26		ĺ	1 72	12900	32
	16	15	S MJ9107	821020	1430	2600	620	1		1	1 24	11200	7.8
	16		W MJ9108				1 600	İ		1 310	1 360	1 850	2500
	17	3 :	S MJ9109	821011	1100	1900	1 150			1	1 52	13500	20
	17		S MJ9110				1 250	1 15		1	1 112	15200	46
	17		S MJ9111				140	1 21		1	1 66	17000	40
	17		S MJ9112				1 150	1		1	1 45	13900	20
	17		S MJ9113				1 220	33		1	1 48	13600	29
	17		S MJ9114				1 450	33		1	77	14500	31
	17		S MJ9116				370	1 25		1	1 64	15500	29
	17		S MJ9117				1 58	1 20		1	1 33	15100	12.0
	17		S MJ9118				1 16.1			İ	1 14	14900	
	17		S MJ9119				1 37	35		1	1 23	15100	7.6

UNITS: LIQUID - UG/L (PPB) DISSOLVED SOIL - MG/KG (PPM) DRY WEIGHT BASIS FOR ALL QUANTIFIABLE VALUES

M = COMPOUND PRESENT BUT BELOW THE MINIMUM QUANTIFIABLE LIMIT K = MULTIPLY THE VALUE BY 1,000 KK = MULTIPLY THE VALUE BY 1,000,000 * NON-PRIORITY POLLUTANT

STATION DESCRIPTION		WELL ITR DEPTH M NUM	DATE	TIME	AL	*	CR	- META BA*	BE BE	A R A M I	E T E R S	FE*	NI
	17	SHAL W MJ8042			330	K	1 32 K			1400	17200	1 410 K	1 26 K
	17	DEEP W MJ9120			65	K	680			490	240		13200
	18	3 S MJ912					320	48			56	13400	6.7
	18	6 S MJ9122					980	25		1	325	16400	1 39
	18	9 S MJ912					140	47			221	13000	1 20
	18	SHAL W MJ9126								80	1	16800	530
	19	3 S MJ9127					5.8					11340	1 13.4
	19	6 S MJ9128			1700		20	19		1		11800	8.5
	19	9 S MJ9129			1300		5.1	19		1	1 10.8		1
	19	12 S MJ9130			980	V	10.7				1 15	960	
	19	SHAL W MJ9132			12	K	1 15	1 20		120		1 190	860
	20	3 S MJ9133 6 S MJ9134			260		97 150	22				11300	8.7
	20	9 S MJ9135		1010			1 30	1 24 1		l	85	700	9.2
	20	12 S MJ913					7.9	24 25			9.2	900	1 15
	20	15 S MJ9137			1600		1 7.9	1 22 1				12600 12500	1 26
	20	SHAL W MJ9138			11	K	52	i i			1 410	57 K	470
	21		821021		1800	15	1 370	56				14300	1 37
	21	6 \$ MJ9140					1 570	50			1 450	13000	11900
	21	9 S MJ9141					340	48				13000	1 31
	21	12 S MJ9142		1535			54	i .				11800	1 17
	21	15 S MJ9143			1500		1 31	18 1				11900	7.8
	21	SHAL W MJ9144			480		1 160			i	1	65 K	
	22	3 S MJ9145	821012	0900	1050		11150	25			1 103	15600	1 500
	22	6 S MJ9146	821012	0930	2600		12400	100 1			1 149	18200	1 219
	22	9 S MJ9147	821012	1000	5300		13900	148			335	1 13.4K	1 390
	22	12 S MJ9148	821012	1030	5000		1 560	50			1 122	16000	1 87
	22	15 S MJ9149	821012	1100			1	1			_	1 38	1
	22	SHAL W MJ9150			700		1 78	1 150 1			1	4000	1 130
	22	DEEP W MJ9156			850		1 22			100	1	1 27 K	1 280
	23	3 S MJ9157					230	27			60	14800	1 63
	23	6 S MJ9158			-		1 510	39		1	S. Carlos	17800	1 31
	23	9 S MJ9159					550	38			60	1 10.5K	32
	23	SHAL W MJ9162					1 400	150			51	40 K	
	24	3 S MJ9163					6.7	19				12200	56
	24	6 S MJ9164 9 S MJ9165			1400		5.2	20				2000	1 5 6
	24	12 S MJ9166					2.7	1 21 1				11400	5.8
	24	15 S MJ9167					4.2	21		-		6000	7.7
	24	SHAL W MJ9168					1					11800	
	25	3 S MJ9169					5.2	17			1	14100	1
	25	6 S MJ9170					22	17 47			1 21	2000 7200	1 6 6
	25	9 S MJ9171					1 13.5	45			· CONTRACTOR		6.6
	25	SHAL W MJ9174			2700		1 10.0	47				18000 11700	7.4
	25	DEEP W MJ9180		6.6.5.5.5.	845		i	1				12700	
	26	3 S MJ9181					3.0	30			1 12	12/00	

UNITS: LIQUID - UG/L (PPB) DISSOLVED

M = COMPOUND PRESENT BUT BELOW THE MINIMUM QUANTIFIABLE LIMIT K = MULTIPLY THE VALUE BY 1,000 KK = MULTIPLY THE VALUE BY 1,000,000 * NON-PRIORITY POLLUTANT

STATION DESCRIPTION		WELL DEPTH I	ITR M NUM	DATE	TIME	AL	*	CR		M E T	ΓΑ L *	S P	ARAM CO*	E T E		FE*		N I
	26	6	S MJ9182	821026	1440	6200		1 5.4		61			1	1 25		10.2K		
	26	9	S MJ9183	821026	1450	5000		8.4	İ	49	i		İ	1 24	i	9200	20	5.5
	26	SHAL	M MJ9186	821111	1230			1	1	340	1		1 80	i		3200	1 49	
	27	SHAL	W MJ8046	821116	1100	12	K	1	1		1		1 360	ì	i	200	16400	
	28	SHAL	M MJ8047	821116	1230	38	K	16100		180	1		13600	1 590	i	54 K	1 77	
	29	SHAL	W MJ8045	821115	1300	900		1 15	1		1		400	1	i	410 K		
	30		MJ8033					1	1		1		1	i		4600	1 210	
BERM #1			S MJ9187					54	-	130	1		8.5	1 190		7500	1 140	
BERM #2			MJ9188					1 102	1	150	1		8.8	1 210	17	7800	1 1	140 I
BERM #3			MJ9189			990		1 110	1	66	1		1 10	1 140	1	10 K	1 2	200
BERM #4			MJ9190					250	1	28	- 1		1 12	1 180	1	18.9K	1 2	240
BERM #5			MJ9191			1400		98	1	46	1		9.1	1 570	1	10.4K	1 1	80
BERM #6			MJ9192			850		36	1	88	1		1 16	1 105	1	10.4K	1 290)
BERM #7 BERM #8			MJ9193					1 160	1	39	1		1 12	250	1	15.3K	1 160	
BERM #9			MJ9194					11600	1	37	- 1			590		3400	1 24	
BLANK			MJ9195		1200			5300		31			1	890		3900	1 34	
PEA GRAVEL			MJ9197			20	M	1 1	MI	10	MI	0.5 M	1 5 N	11 5	MI		11 4	MI
SS#2			MJ9198		0050	180		11100	!		1		1	1	1	160	1	1
SS#3			MJ9328					11100	- 1	100	1		1	320	-	3700	78	
SS#4			MJ9329			1000		78	- 1		1		1	70		1600	1 21	
SS#5			MJ9335			430		68	1		ļ			84		300	1 17	
SS#6			MJ9341			710		1 190	1	140	!			580		9200	1 57	
SS#7			MJ9346 MJ9347			830		1 210	- !	84	1			1 340		2600	58	
SS#8			MJ9059			850		1 46	1	49	1		l	240		3300	1 49	
SS#9			MJ9073			1000		60	1	25	!		ļ	220		000	1 49	
SS#10			MJ9073			550		31	1	37	1			86		3700	1 740	
SS#11			MJ9074			810		55	1	25	1	-		1 880		3000	1 64	
SS#12			MJ9075 MJ9076			200		39	1	7.	1			200	3.5	260	1 18	
TRANSFER BLANK			MJ8043			1100		450	1	71	1		7.1	560		3700	1 74	
TRANSPORT BLANK			MJ8043						- 1		!			1	1	120	1	1
TIVITOT OTT BEAT		,	MJ0044	021101	1100			1	1		1			1	1	160	1	1

UNITS: LIQUID - UG/L (PPB) DISSOLVED

M = COMPOUND PRESENT BUT BELOW THE MINIMUM QUANTIFIABLE LIMIT K = MULTIPLY THE VALUE BY 1,000 KK = MULTIPLY THE VALUE BY 1,000,000 * NON-PRIORITY POLLUTANT

STATION DESCRIPTION		WELL DEPTH N	ITR NUM	DATE	TIME	MN*	ZN	M E T B*	A L	. s v*	P	A R A	M E	T E R S AS	SB		SE
	01 01 01 01 01	6 S 9 S 12 S SHAL W DEEP W	MJ9301 MJ9302 MJ9303 MJ9304 MJ9312 MJ9311	821007 821007 821007 821108 821108	0915 0930 0945 1330 1400	2.9 5.6 9.4 6.4 1100 1300	130 160 381 150 1000 48	29 29 35 44 2900 860	1 1 1 1 1	20 20 20 20	MI MI MI	 	MI MI MI	M M 3.7 M 	2 2 2 2	MI MI MI	0.2 MI 0.2 MI 0.2 MI 0.2 MI
	02 02 02 02 02	6 S 9 S 12 S	6 MJ9313 6 MJ9314 6 MJ9315 6 MJ9316 6 MJ9317	821014 821014 821014 821014	1030 1035 1040 1045	610 36 42 64 130	260 88 71 200 99		1		1			1.3			-
	02 03 03 03 03 04	3 S 6 S 9 S SHAL W	MJ9318 MJ9319 MJ9320 MJ9321 MJ9324 MJ9325	821014 821014 821014 821115	1155 1205 1210 1200	670 1800	110 420 1500 440 5900	5700 	 	20	 	12	I	2.1 2.2 600 2.8	108	M	0.2 M
	04 04 04 05 05	6 S 9 S SHAL W 3 S	MJ9326 MJ9327 MJ9330 MJ9331 MJ9332	821018 821018 821102 821018	1430 1435 1500 1330	146 112 6500 2800	1 24 1 46 1 38 1 510	10 10 4000 10 13	MI MI MI	20 20 20 20	MI MI MI	1	MI MI MI	4.4 2.5 1.7 2.7	2 2 2	MI MI MI	0.2 MI 0.2 MI 0.2 MI 0.2 MI 0.2 MI
	05 05 05 06 06	12 S SHAL W 3 S	MJ9333 MJ9334 MJ9336 MJ9337 MJ9338	821018 821103 821018	1330 1400 1035	300 700 54 150 153	350 2000 650 79 131	10 15 11 k 10	MI MI MI	20 20 20 20	MI MI MI MI	1 1	MI MI MI MI	4.8 6.3 3.9	2 2 2	MI MI MI	0.2 MI 0.2 MI 0.2 MI 0.2 MI
	06 06 06 07 07	SHAL W	MJ9339 MJ9340 MJ9342 MJ9343 MJ9344	821018 821103 821014	1100 1100 1415	57 114 2800 220 90	176 262 190 57 330	10 10 k	MI MI I	20 20	MI MI	1	MI MI	2.8 2.2 5.2 2.2	2 2	MI	0.2 MI 0.2 MI
	07 07 08 08 08	SHAL W	MJ9345 MJ9348 MJ9349 MJ9350 MJ9051	821103 821025 821025	1430 1410 1425	66 3200 260 50 33	210 700 640 36 40	 6400 69 170 140			1		1	1.9			
	08 09 09 09	3 S 6 S 9 S	MJ9054 MJ9055 MJ9056 MJ9057 MJ9058	821019 821019 821019	1020 1030 1040		1 2800 41 390 280 190	3400 16 17	1			1.4	1	2.2			
	09 10 10	SHAL W	MJ9060 MJ9061 MJ9062 MJ9063	821103 821019 821019	1500 1235 1250		1 1500 1 610 1 2600 1 1500	18 k 16 74 62			1			3.4 1.9 2.2		1	

UNITS: LIQUID - UG/L (PPB) DISSOLVED

M = COMPOUND PRESENT BUT BELOW THE MINIMUM QUANTIFIABLE LIMIT K = MULTIPLY THE VALUE BY 1,000 KK = MULTIPLY THE VALUE BY 1,000,000 * NON-PRIORITY POLLUTANT

TATION DESCRIPTION		WELL DEPTH N	ITR M NUM	DATE	TIME	MN*	ZN	١	M E B	T A	L S	Р	A R A	ME	T E R S AS	SB		SE
	10	12 9	MJ9064	821019	1340	135	13100		1 145		 I				6.8			
	10		MJ9065			60	11400		1 65		i	i		i	1.8		i	
	10	SHAL V	W MJ9066	821104	1000	290 K		K	1 110	K	1	ĺ		i	21 1		i	
	11		MJ9067			1.5 M	11 72		1 80		20	MI	- 1	MI	I MI	2	Mİ	0.2
	1.1	6 9	MJ9068	821008	1115	3.1	1 180		1 41		20	MI	1	MI	I MI	2	MI	0.2
	11	8 9	MJ9069	821008	1130	3.6	1 150		37		20	MI	- 1	MI	I MI	2	MI	0.2
	11	10 9	MJ9070	821008	1145	8.5	11200		52		20	MI	1	MI	5.6	2	MI	0.2
	11		MJ9071			26	1 410		37		20	MI	1	MI	I MI	2	MI	0.2
	11		MJ9072			475 K		K	14	K		!		1	22		- 1	
	12		MJ9078			480 K		K		K		. !		!	20		- 1	
	12		MJ9079 MJ9080			250	340		1 120			- 1		1	!		- 4	
	12		MJ9081			10.6	93		96			1		1	!		1	
	12		MJ9082			210	1 117		1 130			1		- !			!	
	12		MJ9083			104	1 91		1 140			1		1	!		ļ	
	12		MJ9084			4000	18400		1 140			1		1			1.	
	13		MJ9085				360		1 117			1		- 1			1	
	13		MJ9086			36	96		93			1		1	1		1	
	13		MJ9087			160	61		94			1		- 1	!		1	
	13		MJ9090			960	1 01		11300	- 1		1		- 1	1		1	
	14	3 9	MJ9091	821020	0945		11700		80			1		1	2 2 1		- 1	
	14		MJ9092			240	700		1 16	i		1		- 1	2.2		1	
	14		MJ9093			150	1 440		1 16	1		. 1		1	1.3		1	
	14		MJ9094			96	730		1 17	i		i		1	1.6		1	
	14	15 S	MJ9095	821020	1145	98	11040		1 15	i		i		1	3.0		1	
	14		MJ9096				1 380	K		K		i		1	18		- 1	
	15		MJ9097				13800		1 115	1		i		1	10		i	
	15		MJ9098				16800		1 210	i	76	i		i	5.8		i	1.8
	15		MJ9099			1260	19100		1 240	i	76	i		i	5.4		i	1.4
	15		MJ9102			530	1 260		1 10	KI		i		i	1		i	1.4
	16	3 S	MJ9103	821020	1310	13	1 210		1 12	1		i		i	102		i	
	16	6 S	MJ9104	821020	1325	87	1 130		1 29	1		1		i	15	28	i	
	16	9 S	MJ9105	821020	1345	300	1 240		1 70	1		1		1	3.0		i	
	16		MJ9106			96	234		56	1		1		1	3.1 1	3.4	i	
	16		MJ9107			21	1 105		1 27	1		1			3.7		i	
	16	SHAL W	MJ9108	821104	1100	21 K	64	K	1 33	KI		1		1	11 1		1	
	17		MJ9109			110	11100		1 18	1		- 1		1	1		İ	
	17		MJ9110			111	11600		52	1		1		1	1		1	
	17		MJ9111			113	11900		1 40	1		1		1	4.4		- Î	
	. 17		MJ9112				11000		1 16	1		1		1	2.0		1	
	17		MJ9113				11190		1 24	1		1		1	1		1	
	17		MJ9114				11370		26	1		1		- 1	1		1	
	17		MJ9116				11030		23	1		1		- 1	1		- 1	
	17		MJ9117			162	400			1		- 1		1.	1		1	
	17	215	MJ9118	021013	1405	109	169			- 1		- 1			1		1	

UNITS: LIQUID - UG/L (PPB) DISSOLVED

SOIL - MG/KG (PPM) DRY WEIGHT BASIS FOR ALL QUANTIFIABLE VALUES

M = COMPOUND PRESENT BUT BELOW THE MINIMUM QUANTIFIABLE LIMIT K = MULTIPLY THE VALUE BY 1,000 KK = MULTIPLY THE VALUE BY 1,000,000 * NON-PRIORITY POLLUTANT

STA	TION DESCRIPTION		WELL DEPTH M	ITR I NUM	DATE	TIME	MM	1*	ZN	M E B [†]		V*	A R A M E	TERS	SB	SE
		17		MJ8042			410				KI	1		32	1	
		17		MJ9120			210	K		18400			1			1
		18		MJ9121			85		13300	1 110					1	1
		18		MJ9122			62		7000	1 150						1
		18 18		MJ9123			59		12700	1 140	. !					1
		19		MJ9126 MJ9127						13300			1			1
		19		MJ9128			76		11200	84						1
		19		MJ9129			77 146		1 430	1 72	1					
		19		MJ9130			62		1 860	1 58					!	1
		19		MJ9132			10	K		14400	1					
		20		MJ9133			330	11	1 13.3K		1	1			1	
		20		MJ9134			61		11750	i	i		1	3.8	200	
		20		MJ9135			38		11300	i	i		i	1.3	The state of	
		20		MJ9136			92		12100	i	i		i	1.8		
		20	15 S	MJ9137	821021	1120	78		1 360	i	i	i	i	1.4		i
		20		MJ9138			21	K	I II K	12600	- 1	1	1			i
		21		MJ9139			1550		1 40.5K		- 1	- 1	1	6.5	6.7	İ
		21		MJ9140			560		1 10.9K				1	2.6		1
		21		MJ9141			340		16500	1 22	1			7.6		1
		21		MJ9142			100		1 460	1	1			2.9		
		21		MJ9143			64		312	11200	1			1.5		
		22		MJ9144			870		1 390	11200	1	1		10	170	1
		22		MJ9146					15700	1 38	1		1	19	130	70 5
		22		MJ9147					1 11.2K		1	4.		13.1	1 69	30.5
		22		MJ9148			910		12900	1	i	i	i		11.3	
		22		MJ9149					350	1	i	i	i		11.5	
		22	SHAL W	MJ9150	821110	1200	5300		12000	11800	i	i	i			i
		22	DEEP W	MJ9156	821110	1300	45	K	1 30 K	12600	1	i		32	26	4.1
		23		MJ9157			1200		12000	1 109	- 1	1	1			
		23		MJ9158			380		11400	1 130	- 1	1	- 1			
		23		MJ9159			280		520	1 160	- 1	1	1			1
		23		MJ9162					240	19800	1		1	11		
		24		MJ9163			530		60	94	1		1		nt negati	
		24		MJ9164			390		1 120	41	1	i		2.2		
		24 24	100	MJ9165			130		43	37	1	!		1.4		
		24		MJ9166 MJ9167			240		1 52	1 48	- 1	1	1	3.6		
		24		MJ9168			96		1 14	800	1	1	1			
		25		MJ9169			33		560	1 87	1	1	1			
		25		MJ9170			121		1 210	1 160	1	1				
		25		MJ9171			89		290	1 170	i	i				
		25		MJ9174	and the second second				23	12000	1	i	1			
		25		MJ9180					1 160	740	1	i	i	100		11111
		26		MJ9181			38		1 6	1 120	i	i	i			

UNITS: LIQUID - UG/L (PPB) DISSOLVED

M = COMPOUND PRESENT BUT BELOW THE MINIMUM QUANTIFIABLE LIMIT
K = MULTIPLY THE VALUE BY 1,000
KK = MULTIPLY THE VALUE BY 1,000,000
* NON-PRIORITY POLLUTANT

STATION DESCRIPTION		WELL	M	ITR NUM	DATE	TIME	MM	*	ZN	M E		L S V*	P	A R A I	M E	T E R S	SB		SE
	26	6	S	MJ9182	821026	1440	170		240	1 118								'-	
	26	9	S	MJ9183	821026	1450	140		11800	1 124			1		- 1	1			
	26	SHAL	W	MJ9186	821111	1230	6300		1 34 K		100		i		- i	- 1		- 1	
	27	SHAL	W	MJ8046	821116	1100	12	K	1 94 K	14800			- 1	45	- 1	25		- !	
	28	SHAL	W	MJ8047	821116	1230	43	K	1 510 K	64	K		i	45	- 1	25		1	
	29	SHAL	W	MJ8045	821115	1300	33	K	I 350 K	1 20	K		- 1	19	- 1	20		- 1	
	30	SHAL	W	MJ8033	821220	1100	1200		1 32	11200	1		- 1	19	1			1	
BERM #1		- 1	S	MJ9187	821025	1000	1500		1 510	1 104	- 1		- 1		- 1	!		1	
BERM #2				MJ9188			920		11700	1 98			- 1		- 1	1		- 1	
BERM #3				MJ9189			850		12900	1 100	- 1		- 1		- 1			!	
BERM #4				MJ9190			1080		1 13.3K	1 160			- 1		- 1	1		1	
BERM #5				MJ9191			850		17800	1 102	1		- 1		- !	- !		!	1.0
SERM #6		- 1		MJ9192			880		11200	1 110	1		. 1			- 254		!	
BERM #7		1		MJ9193					1 16 K		1		1		1				
BERM #8		1	S	MJ9194	821025	1145	82		1 540	1 170	- !	1.40	- !		!	2.4		1	0.9
BERM #9				MJ9195			48		11190		- !	140	1		1			- 1	
SLANK				MJ9197		1200	1.	5 N		1 170	!	76						- 1	
RILLER'S WATER				MJ9199			1.	יו כ		1 28	. !	20	MI	- 1	MI	I MI	2	MI	0.2 M
EA GRAVEL				MJ9198			10		1.7	!	1		- 1		1	1		- 1	
S#2				MJ9328		OCEO	10		23				- 1		1	1		1	
S#3		0	0	MJ9329	021110	0952	550		16200	60	1		- 1		1	16	34	1	
S#4		0	0	MJ9329	021118	0956	180		27.6K	61	1		. 1		1	5.8		1	
S#5		0	0	MJ9335	821118	1002	260		16800	54	- 1		-		1	38	98	1	
S#6				MJ9341			2600		1 81 K	1 88	- 1		1	6.1	1	17 1	6.0	i	
S#7				MJ9346			400		11400	1 61	- 1		1		1	1		i	
				MJ9347			740		12000	1 60	- 1		1		1	i		i	
S#8				MJ9059			530		14700	1 53	1		1		1	8.5		i	
S#9				MJ9073			600		1 330	1 54	ĺ		Ĺ		i	1.3		- 1	
S#10		0	S	MJ9074	821118	1048	620		1 820	47	i		i		i	2.0	9.5	- 1	
S#11				MJ9075			160		1 760	1 45	i		i		i	2.0	2.7		
S#12				MJ9076			550		12400	90	i		i		i	4.3	4.5	1	
RANSFER BLANK			W	MJ8043	821101	1100			1 140	540	i		i		i	١ ٠٠٠	4.5	1	
RANSPORT BLANK			W	MJ8044	821101	1100			1	540	i		i		i	1		1	

UNITS: LIQUID - UG/L (PPB) DISSOLVED

M = COMPOUND PRESENT BUT BELOW THE MINIMUM QUANTIFIABLE LIMIT K = MULTIPLY THE VALUE BY 1,000 KK = MULTIPLY THE VALUE BY 1,000,000 * NON-PRIORITY POLLUTANT

STATION DESCRIPTION NUM DEPTH M NUM DATE TIME TL HG SN* CD PB	PHENOLIC CN
01 3 S MJ9301 821007 0900 I MI 0.02MI 2 MI 0.85 I 9.8	
01 6 S MJ9302 821007 0915 M 0.02M 2 M 8.2 4.9	1 5.8
01 9 S MJ9303 821007 0930 M 0.02M 2 M 23 1.5	1 20 1
01	1 9.2 1
01 SHAL W MJ9312 821108 1330 0.2	9.2
01 DEEP W MJ9311 821108 1400 0.63	
02 3 S MJ9313 821014 1025 1 1 1.03 46	1 77
02 6 S MJ9314 821014 1030 0.38 2.3	3.7
000 000 110715 001011 1075	
02 12 6 14 16 7 1 6 00 10 1 4 10 10	
02	
02 SHAL W MJ9318 821102 1100 0.33 25	1 17
07 7 0 14 107 10 001014 1155	1 13 1
07 0 0 110701 001011 1010	
07 CHAL H H10704 COLLEGE 1000	1 11100
04 7 0 11 10 70 5 00 10 10 1 11 5 11 11 1 11	1 14400 1
	1 22 1
Of C MIOZOZ COLOLO 1475	I I MI
	I I MI
05 7 0 1/10771 00/10/0 1770	
	I I MI
0.0211 2 111 49	1 2.2 1
05 9 \$ MJ9333 821018 1330 MI 0.02MI 2 MI 7.3 66	1 1.1 1
05	I I MI
05 SHAL W MJ9336 821103 1400 0.28 160	1 35 K I
06 3 S MJ9337 821018 1035 MI 0.02MI 2 MI 0.33 20	1 10.1 1
06 6 S MJ9338 821018 1045 MI 0.02MI 2 MI 5.2 20	I I MI
06 9 \$ MJ9339 821018 1050 MI 0.02MI 2 MI 6.0 10.9	I I MI
06 12 S MJ9340 821018 1100 MI 0.02MI 2 MI 28 0.5 I	MI 3.8
06 SHAL W MJ9342 821103 1100 0.43 85	
07 3 S MJ9343 821014 1415 2.9 0.51 19	
07 6 S MJ9344 821014 1425 3.4 22 3.5	
07 9 S MJ9345 821014 1430 3.2 9.2 1.11	
07 SHAL W MJ9348 821103 1430 0.78 120	1 13 1
08 3 S MJ9349 821025 1410 0.03 3.8 130	
08 SHAL W MJ9054 821108 1500 0.38 175	1 1 1
09 3 S MJ9055 821019 1020 1.5	1 1 1
09 6 S MJ9056 821019 1030 1 7.0 2.4	1 1 1
09 9 S MJ9057 821019 1040 4.1 1.6	1 1
09 12 S MJ9058 821019 1045 2.6 11.6	1 2.7 1
09 SHAL W MJ9060 821103 1500 0.23 130	1 11900 1
10 3 S MJ9061 821019 1235 22 49	1 1 1
10 6 S MJ9062 821019 1250 39	i i 5.0 i
10 9 S MJ9063 821019 1310 1 25 18	1 1 1
10 12 S MJ9064 821019 1340 52 1.53	i 6.0 i
10	1 6.2 1

UNITS: LIQUID - UG/L (PPB) DISSOLVED SOIL - MG/KG (PPM) DRY WEIGHT BASIS FOR ALL QUANTIFIABLE VALUES

M = COMPOUND PRESENT BUT BELOW THE MINIMUM QUANTIFIABLE LIMIT K = MULTIPLY THE VALUE BY 1,000 KK = MULTIPLY THE VALUE BY 1,000,000 * NON-PRIORITY POLLUTANT

STATION DESCRIPTION		WELL DEPTH	ITR M NUM	DATE	TIME		ET	A L S HG	PAF SN*		R S	PHENOLIC	CN CN
	10		W MJ9066				!	0.43		I 60 K	1 620	!	1 830
	11		S MJ9067				MI	0.02MI		MI 0.35		!	1 16 1
	11		S MJ9068 S MJ9069				MI	0.02MI	_	MI 2.0	6.7	1	1 12.2 1
	11		S MJ9009				M I	0.36		MI 1.24		1	6.6
	11		S MJ9071				MI	0.02MI	2	MI 6.5	23	1	1 11.7
	ii		W MJ9072				1-11	1.28	2	14800	1 280	-	1 22 1
	ii		W MJ9078				i	0.43		13900	11100		36
	12		S MJ9079				i	0.45		2.1	1 22		1 00 1
	12		S MJ9081				i			5.1	8.4	i	i
	12		S MJ9082				i	i		1 22	1	i	i i
	12	15	S MJ9083	821025	1240		- 1	1		1 8.4	i	1	i i
	12		W MJ9084				1	0.28		1 210	1	İ	i i
	13	3	S MJ9085	821027	1310		1	- 1		1 5.1	1 12.1	1	5.1
	13		S MJ9086				1	- 1		1 1.18	1 2.8	1	1 1.6 1
	13		S MJ9087				- 1			1	1.2	1	3.6
	14		S MJ9091							1 15	340	1 .	1
	14		S MJ9092				1			1 4.8	76	1	2.3
	14		S MJ9093				(5)	0.04		7.1	5.2	1	3.5
	14		S MJ9094			*		0.03		9.5	1 12.5		4.8
	14		S MJ9095				- 1	0.03		9.6	29		1
	14		W MJ9096				1	0.53		1 12 K		1	1 41 1
	15		S MJ9097				1			8.3	1 72	1	
	15		S MJ9098 S MJ9099				- 1	0.06		1 170	11500		55.6
	15		W MJ9102					0.06		1 200	4800		5.4
	16		S MJ9103					0.03		1 20	1 84 K		11200
	16		S MJ9104				i	0.05		1 20	1 141 K		2.2
	16		S MJ9105				i	0.04		6.9	1 850	1	1 2.2 1
	16		S MJ9106				i	0.04			15200	1	1
	16		S MJ9107				i	i			1 232	i	1
	16		W MJ9108				i	0.43		1 580	1 470	i	450
	17		S MJ9109				i			8.3	1 200	1	7.1
	17		S MJ9110				i	1000		1 18	1 190	i	1 1.8 1
	17	9	S MJ9111	821011	1150		1	1		1 13.6	1 87	i	i i
	17	12	S MJ9112	821011	1230		-1			1 8.0	1 39	1	2.7
	17	15	S MJ9113	821011	1300		- 1	1		1 12.8	1 42	1	1 2.6
	17	18	S MJ9114	821013	1330		1	0.367		1 11.5	1 167	1	9.0
	17		S MJ9116				1	1		1 11.1	1 82	1	1 5.1 1
	17		S MJ9117				1	1		3.4	1 53	1	1 2.2
	17		S MJ9118				1			1 2.5	1 27		5.5
	17		S MJ9119				1			2.5	1 41		1
	17		W MJ8042				- 1	0.83		14500	11600	1	92
	17		W MJ9120				1	0.83		1 800	1 210		1
	18		S MJ9121				1	0.03			11130		1
	18	6	S MJ9122	821026	1020		1	0.02		3.1	14500	1	1

UNITS: LIQUID - UG/L (PPB) DISSOLVED
SOIL - MG/KG (PPM) DRY WEIGHT BASIS FOR ALL QUANTIFIABLE VALUES

WESTERN PROCESSING INVESTIGATION KENT, WASHINGTON

M = COMPOUND PRESENT BUT BELOW THE MINIMUM QUANTIFIABLE LIMIT
K = MULTIPLY THE VALUE BY 1,000
KK = MULTIPLY THE VALUE BY 1,000,000
* NON-PRIORITY POLLUTANT

STATION DESCRIPTION		WELL DEPTH	ITR M NUM	DATE	TIME	M E	T A L S HG	PAR SN*	A M E T E	R S	PHENOLIC	CN
	18		S MJ9123				0.04		1 4.3	1 630		
	18		W MJ9126							1 110	İ	i .
	19		S MJ9127			- 1			8.9	1 1.24	1	3.4
	19		S MJ9128			- 1		digital and	8.2	1	1	
	19		S MJ9129				- 1	1 7 7 5	0.64	1 1.01	1	1.7
	19	12	S MJ9130	821027	1120	- 1	- 1		1 2.0	1 2.4	1	
	19	SHAL	W MJ9132	821101	1600	9.5	- 1		290	1	1	
	20	3	S MJ9133	821021	0940		1		1 58	11900	1	1000
	20		S MJ9134			- 1	1		1 8.4	1 240	1	
	20	9	S MJ9135	821021	1030	1	1		1 13	1 67	1	
	20	12	S MJ9136	821021	1055	1	- 1		4.9	1 190	1	2
	20		S MJ9137			- 1	1		1 1.25	1 32	1	
	20	SHAL	W MJ9138	821104	1330	- 1	0.38		1 100	1 280	1	70
	21	3	S MJ9139	821021	1400	- 1	- 1	7.6	226	16400	1	
	21		S MJ9140				1	3.0	63	11800	1 1	
	21		S MJ9141			1			38	11010	1	
	21		S MJ9142						2.5	1 28	1 1	
	21		S MJ9143				1		1.8	1 50	1	No.
	21	SHAL	W MJ9144	821105	1030	1	0.28			1	1	
	22		S MJ9145					6.4	79	1 16 K	1	3.4
	22		S MJ9146					7.4	134	1 12 K	1	22.6
	22		S MJ9147					10.0	402	24.8K	1	179
	22		S MJ9148						93	15600		113
	22		S MJ9149			!			10.6		1 1	5.3
	22		W MJ9150				15		18	250	1 1	360
	23		W MJ9156			1	46		77			36
	23		S MJ9157				0.02		8.9	45.6K		
		0	S MJ9158	821026	1150		0.02		16	480	1 1	8.5
	23	CHAL I	S MJ9159	821026	1200	!	0.02		7.6	1 121	1	
	23 24	SHAL	W MJ9162	821026	1430		1			1 430	1	
	24	2 :	S MJ9163	821022	0950				0.59	111	1	
	24		S MJ9164						0.86	1 44	1	
			S MJ9165				0.04		0.29	1 11.3	1 1	3.6
	24		S MJ9166				1		0.31		1	
	24		MJ9167			!		400		2.0	1	3.6
	24		MJ9168			!	0.58	0.1			1 1	19
	25		S MJ9170			!	0.05			1 13.0	1 1	
	25	9 ;	MJ9171	821026	1440	!				1 66		
	25		MJ9180				0.58	1			1	
	26		MJ9181						2.9	1 13	1	
	26		MJ9182			1	1	1		1 20		3.9
	26		6 MJ9183			1	- 1	- 1	1.8	96		
	26		V MJ9186			- 1	1	- 1	10	1	1	
	27		MJ8046			1	1	1	320	1	1	43
	28		MJ8047			- 1	5 - 55 d	1	5600	6.5	l i	920
	29	SHAL V	MJ8045	821115	1300	1	1		76	Titles -		

UNITS: LIQUID - UG/L (PPB) DISSOLVED

SOIL - MG/KG (PPM) DRY WEIGHT BASIS FOR ALL QUANTIFIABLE VALUES

M = COMPOUND PRESENT BUT BELOW THE MINIMUM QUANTIFIABLE LIMIT
K = MULTIPLY THE VALUE BY 1,000
KK = MULTIPLY THE VALUE BY 1,000,000
* NON-PRIORITY POLLUTANT

	WELL	M	ITR NUM	DATE	TIME	M	1 E T	A L S HG	PARA SN*	M E T E		PHENOL IC	CN
30	SHAL						- 1	0.31	ı		1 21	1	
	1				1000		- 1	1		13	220	- 1	- 1
	1				1015		1	1	1	8.6	470	1	1
	1	S	MJ9189	821025	1030		- 1	1	- 1	17	13300	1	
	1	S	MJ9190	821025	1045		1	0.04	1	49	11090	1	1
	- 1	S	MJ9191	821025	1100		- 1	1		30	13000	1	1
	- 1	S	MJ9192	821025	1115		1	0.03	1	5.7	770	1	1
	- 1	S	MJ9193	821025	1130		1	0.06	- 1	71	15100	1	i
	1	S	MJ9194	821025	1145		- 1	0.14	1	14	230	1	i
	- 1	S	MJ9195	821025	1200		1	1	1	22	1 170	i	i
		S	MJ9197	821008		1	MI	0.02MI	2 MI	0.1 M		i	I MI
		W	MJ9199	821012			1	1	1	0.17	1 1	i	1
		S	MJ9198	821012			i	i	i		i i	i	3.6
	0				0952		i	i	10.3		i 10.3K i	i	4.1
							i	i	10.5			i	7.1
							i	i	i			i	1.5
							i	i	10 1		1 17 K I	- 1	1.0
							i	i			1 450	1	8.4
		_					1	i	5.2			1	0.4
							1	1					
							i	i	;	9 750			
		-					· i	1	1				121
								1	1				1.2
		-					- 1	1	1			1	13 15
	NUM	NUM DEPTH	NUM DEPTH M 30 SHAL W 1 S 1 S 1 S 1 S 1 S 1 S 1 S 0 S 0 S 0 S 0 S 0 S 0 S 0 S 0 S 0 S 0	NUM DEPTH M NUM	NUM DEPTH M NUM DATE	NUM DEPTH M NUM DATE TIME 30 SHAL W MJ8033 821220 1100	NUM DEPTH M NUM DATE TIME TL 30 SHAL W MJ8033 821220 1100	NUM DEPTH M NUM DATE TIME TL 30 SHAL W MJ8033 821220 1100 S MJ9187 821025 1000 S MJ9188 821025 1015 S MJ9189 821025 1015 S MJ9199 821025 1045 S MJ9191 821025 1100 S MJ9192 821025 1115 S MJ9193 821025 1115 S MJ9194 821025 1115 S MJ9195 821025 1200 S MJ9197 821025 1200 S MJ9197 821008 MI W MJ9199 821012 S MJ9199 821012 S MJ9198 821012 S MJ9199 821012 S MJ9199 821012 S MJ9328 821118 0956 O S MJ9335 821118 1002 O S MJ9341 821118 1008 O S MJ9347 821118 1006 O S MJ9347 821118 1036 O S MJ9073 821118 1044 O S MJ9073 821118 1048 O S MJ9075 821118 1048	NUM DEPTH M NUM DATE TIME TL HG 30 SHAL W MJ8033 821220 1100	NUM DEPTH M NUM DATE TIME TL HG SN* 30 SHAL W MJ8033 821220 1100	NUM DEPTH M NUM DATE TIME TL HG SN* CD 30 SHAL W MJ8033 821220 1100 0.31 I S MJ9187 821025 1000 13 I S MJ9188 821025 1015 8.6 I S MJ9189 821025 1030 17 I S MJ9190 821025 1045 0.04 49 I S MJ9191 821025 1100 30 I S MJ9192 821025 1115 0.03 5.7 I S MJ9193 821025 1130 0.06 71 I S MJ9194 821025 1145 0.14 14 I S MJ9195 821025 1200 22 S MJ9197 821008 I MI 0.02M 2 MI 0.1 M W MJ9199 821012 0.17 S MJ9198 821012 0.67 O S MJ9328 821118 0952 10.3 50 O S MJ9335 821118 1002 30 O S MJ9341 82118 1002 30 O S MJ9347 82118 1006 19 420 O S MJ9347 82118 1036 6.8 O S MJ9059 82118 1041 16 O S MJ9073 82118 1044 16 O S MJ9073 821118 1048 4.3 O S MJ9075 821118 1048 4.3 O S MJ9075 821118 1048 4.3	NUM DEPTH M NUM DATE TIME TL HG SN* CD PB 30 SHAL W MJ8033 821220 1100 0.31 21 S MJ9187 821025 1000 13 220 S MJ9188 821025 1015 8.6 470 S MJ9189 821025 1030 17 13300 S MJ9190 821025 1045 0.04 49 1090 S MJ9191 821025 1100 30 3000 S MJ9192 821025 1115 0.03 5.7 770 S MJ9193 821025 1130 0.06 71 15100 S MJ9194 821025 1145 0.14 14 230 S MJ9195 821025 1200 22 170 S MJ9197 821008 M 0.02M 2 M 0.1 M 0.5 M W MJ9198 821012 0.67 S MJ9328 821118 0952 10.3 50 10.3K O S MJ9325 82118 1002 30 31 K O S MJ9341 82118 1008 19 420 17 K O S MJ9346 82118 1027 3.2 6.1 450 O S MJ9347 821118 1036 6.8 660 O S MJ9073 82118 1044 16 16 120 O S MJ9075 821118 1048 4.3 15900 O S MJ9075 821118 1049 1.7 190	NUM DEPTH M NUM DATE TIME TL HG SN* CD PB PHENOLIC 30 SHAL W MJ8033 821220 1100 0.31 21

UNITS: LIQUID - UG/L (PPB) DISSOLVED SOIL - MG/KG (PPM) DRY WEIGHT BASIS FOR ALL QUANTIFIABLE VALUES

M = COMPOUND PRESENT BUT BELOW THE MINIMUM QUANTIFIABLE LIMIT K = MULTIPLY THE VALUE BY 1,000 KK = MULTIPLY THE VALUE BY 1,000,000

TATION DESCRIPTION		WELL OTR DEPTH M NUM	DATE	TIME	2,4,6 TRI CHLORO PHENOL	P- CHLORO -M- CRESOL	2- CHLORO PHENOL	2,4,DI CHLORO PHENOL	2,4,D METHYL PHENOL	NITRO	4- NITRO PHENOL	2,4,D NITRO PHENOL
	03	9 S J1621	821014				1		1 760	MI		
	04	SHAL W J1630				1	1	1	1 10	KMI	1	i
	05	SHAL W J1636			8800	1	1	1	1 520	1	1	i
	06	SHAL W J1642				1	1	1 20 M	1 20	MI 150 M	ıi -	1
	07	SHAL W J1648				1	1 18 9	1	14600	1	1	i
	08 10	SHAL W J1654				!	1	1	1 98	1	1	1
	10	3 S J1661 6 S J1662	821019			!	1	13700	1 440	MI	1	- 1
	10	9 S J1663				1	1	7900	1	1	1	
	10	12 S J1664				1	1	15200		1	1	1
	10	15 S J1665				1			4500		1	1
	10	SHAL W J1666	821104			1		1 10 KM	7900		!	1
	1.1	12 S J1671	821008			i	1	1 10 KM	600	MI	!	1
	11	SHAL W J1672	821109			i	i	1	200	MI	1	
	1.1	DEEP W J1678	821109	1100		i	i	i	45	М	1	1
	12	12 S J1682	821025	1230		1	i	i	1 400	MI		
	12	SHAL W J1684	821103	1200	20 M	1	i	i 38 M	11100	1	1	1
	14	3 S J1691	821020			1	1	i	1 400	MI	1	
	14	15 S J1695	821020			1	1	1	1 400	MI	i	i
	15	SHAL W J1702	821112		52 M	1	1	1	1	1	13200	i
	17	9 S J1711	821011			1	1	1	1 440	MI	1	i
	17	SHAL W J0427	821110			1	1	1	1 10	KMI	i	i
	17	DEEP W JI720	821110				1	1	54	MI 300	i	i
	21	3 S J1739	821021					11900		1	1	i
	21	6 S J1740	821021			1		4900		1	1	i
	21	9 S J1741	821021			!	1 400 M	3000	400	MI	1	i
	21	12 S J1742 15 S J1743	821021				!			< 1	1	1
	21	SHAL W J1744	821021		20 14	l			2600	1	1	1
	22	12 S J1748	821105 821012		20 M		1 36 M	34 M	1000	1 190	200 M	11
	22	15 S J1749	821012							KM I		1
	23	3 S J1757	821026				1		1000	MI		1
		SHAL W JI762	821026						400	Mil		1
		SHAL W J0462	821116						280		-3-	
		SHAL W J0463	821116				I 200 M	220		1.3KK		1
		SHAL W JO461	821115				1 200 M	220	20			
#7		0 S J1647	821118						20	MI		1
#8		0 S J1659	821118		5.2				510	MI		!
#11		0 S J1675	821118						11 1			

UNITS: LIQUID - UG/L (PPB) DISSOLVED

M = COMPOUND PRESENT BUT BELOW THE MINIMUM QUANTIFIABLE LIMIT K = MULTIPLY THE VALUE BY 1,000 KK = MULTIPLY THE VALUE BY 1,000,000

----- ACID COMPOUNDS -----

STATION DESCRIPTION		WELL DEPTH M	OTR NUM	DATE	TIME	2,6,DI NITRO PHENOL		PENTA CHLORO PHENOL		PHEN	DL DL		001	, ,	
	02		J1616	821014	1040		-	800	M		1				
	03		J1620	821014			1		1	400	MI				
	03		J1621	821014			- 1			400	MI				
	03	SHAL W		821115			!		1	10	KMI				
	04		J1630	821102						19	KMI				
	05		J1634 J1636	821018 821103			- !	1400		16	KMI				
	06		J1642	821103			1	1400	- 1	270	K I				
	07		J1648	821103			i		i	500	MI				
	09		J1660	821103			i		i	100	κi				
	10		J1662	821019			i		i	19	κi				
	10	9 S	J1663	821019			1		i	27	KI				
	10		J1664	821019	1340		1		1	11	KI				
	10		J1665	821019			1		1	20	KI				
	10		J1666	821104			- 1		1	180	K				
	11		J1672	821109			1			3000	I				
	11		J1678	821109			- 1			7200	- 1				
	12		J1684	821103		40	Μļ	40		120	1				
	14		J1691	821020			!	800		1100					
	14		J1692	821020			!		- !	640	M				
	14		J1693	821020			- !		- !	14	K				
	14		J1694 J1695	821020 821020			- 1		- !	10	ΚĮ				
	14		J1696	821104			1		- 1	2900	KMI				
	15		J1702	821112			- 1	80	MI	42	KMI				
	16		J1707	821020			i	00	1	400	мі				
	17		J1709	821011			i		i	15	KMI				
	17		J1710	821011			i		i	15	KMI				
	17	9 S	J1711	821011	1150		1		1	12	KI				
	17		J1712	821011			1		- 1	14	KMI				
	17		J1713	821011			1		1	12	KMI				
	17		J1714	821013			- 1			16	KMI				
	17		J1717	821013			1	1700	MI		MI				
	17		J1718	821013			1		- !	400	MI				
	17		J1719 J0427	821013			- !		1	400	MI				
	17		J1720	821110			1		- !	91 380	K				
	18		J1721	821026			1		- 1		5KM				
	20		J1736	821021			i		i	680	MI				
	21		J1742	821021			i		i		5K				
	21		J1743	821021			i		i	65					
	21		J1744	821105		40	MI		i	10	KI				
	22		J1745	821012			1		i	10	KMI				
	22		J1746	821012			-		-	10	KMI				
	22		J1747	821012			1		1	10	KMI				
	22	12 S	J1748	821012	1030		1		- 1	10	KMI				

UNITS: LIQUID - UG/L (PPB) DISSOLVED

M = COMPOUND PRESENT BUT BELOW THE MINIMUM QUANTIFIABLE LIMIT K = MULTIPLY THE VALUE BY 1,000

KK = MULTIPLY THE VALUE BY 1,000,000

WESTERN PROCESSING INVESTIGATION KENT, WASHINGTON

----- A C I D C O M P O U N D S -----2.6.DI PENTA STA WELL OTR NITRO CHLORO STATION DESCRIPTION NUM DEPTH M NUM DATE TIME PHENOL PHENOL PHENOL 1 460 MI 15 S J1749 821012 1100 23 SHAL W J1762 821026 1430 15200 27 SHAL W J0462 821116 1100 4.1KK 28 SHAL W J0463 821116 1230 1 4 K I BERM #7 1 10 KMI I S J1793 821025 1130 1 400 MI SS#6 0 S J1646 821118 1027 SS#7 0 S J1647 821118 1036 1 760 MI 1 17 K | 19 K | SS#8 0 S J1659 821118 1041 0 S J1675 821118 1050 11170 SS#11 0 S J1676 821118 1053 17700 12600 SS#12

UNITS: LIQUID - UG/L (PPB) DISSOLVED

 $\mbox{M} = \mbox{COMPOUND PRESENT BUT BELOW THE MINIMUM QUANTIFIABLE LIMIT } K = \mbox{MULTIPLY THE VALUE BY 1,000}$

KK = MULTIPLY THE VALUE BY 1,000,000

WESTERN PROCESSING INVESTIGATION KENT, WASHINGTON

									PESTI	CIDE	S		
STATION DESCRIPTION		WELL DEPTH M	OTR NUM	DATE	TIME	ALDRIN	DIELDRIN		,	4,4'- DDE	4,4'- DDD	A-ENDO SULFAN	B-ENDO SULFAN
	06	3 S	J1637	821018	1035	2.86K	1 3.34K	1	1	1	1	1	1 1
	17	3 S	J1709	821011	1100		1	1	1 38	1	1 100	- 1	1 1
	25	9 S	J1771	821026	1440		1	1	1 129	1	1	1	1 1
	28	SHAL W	J0463	821116	1230	3.30	3.60	1	1	1	1	1	1
SS#5		0 S	J1641	821118	1008		1145	1	1	1	1		1 1

STATION DESCRIPTION	NUN	RIVER	M NUM	DATE	TIME	ENDO SULFAN SULFATE	ENDR IN	ENDR IN ALDEHYDE	HEPTA CHLOR	S T I C I HEPTA CHLOR EPOXIDE	D E S	B-BHC	D-BHC	G-BHC L INDANE
	06	3	S J1637	821018	1035		1	1	1 2.93K	1	1		1	
	17	3	S J1709	821011	1100		1	1	1	1	1		1	1 11.8
	28	SHAL	W J0463	821116	1230		1	1	1 3.29	1	1	1	1	1
SS#5			S J1641	821118			1	Ì	1	1		1.	1	1 34 .
SS#6			S J1646	The state of the s			İ	İ	1	İ .	1	1		0.03K

UNITS: LIQUID - UG/L (PPB) DISSOLVED

M = COMPOUND PRESENT BUT BELOW THE MINIMUM QUANTIFIABLE LIMIT @ = ALL PCBS ARE SUMED INTO PCB-1242
K = MULTIPLY THE VALUE BY 1,000

KK = MULTIPLY THE VALUE BY 1,000,000

STATION DESCRIPTION	STA WELL NUM DEPTH M	OTR NUM DATE	TIME	PCB-1242	PCB-125	64 PCB-1221	- PCB - PCB-123	52 PCB-1248	3 PCB-1260	PCB-1016 PHENE	TCDD DIOXIN
	05 3 S 05 12 S 06 6 S 06 9 S 07 6 S	J1620 821014 J1631 821018 J1634 821018 J1638 821018 J1639 821018 J1644 821014	1330 1330 1045 1050 1425	939 @		@ @ 		@ @ 658 2930 586	@ 108	@ 304	?
	10 3 S 14 3 S 15 3 S 15 6 S 15 9 S 17 3 S	J1655 821019 J1661 821019 J1691 821020 J1697 821025 J1698 821025 J1699 821025 J1709 821011 J1736 821021	1235 0945 1500 1510 1520 1100		407			1510 1142 19.6K		3.16K	?
RM #6 RM #8 RM #9 #11 #12	21 6 S 23 3 S 23 6 S 23 9 S 25 9 S 1 S 1 S 0 S	J1740 821021 J1757 821026 J1758 821026 J1759 821026 J1771 821026 J1771 821025 J1794 821025 J1794 821025 J1795 821025 J1675 821118 J	1445 1130 1150 1200 1440 1115 1145 1200 1050					935	@ 	@ @ @	

UNITS: LIQUID - UG/L (PPB) DISSOLVED

M = COMPOUND PRESENT BUT BELOW THE MINIMUM QUANTIFIABLE LIMIT K = MULTIPLY THE VALUE BY 1,000 KK = MULTIPLY THE VALUE BY 1,000,000

										BASE	/ NEU	JT	RAL	. S				
STATION DESCRIPTION		WELL DEPTH M	OTR 1 NUM	DATE	TIME	ACENA THENE		BEN ZIDINE		HEXA CHLORO BENZENE	HEXA CHLORO ETHANE		BIS 2-CHLC EHTYL) ETHER		2-CHLORO NAPH THALENE	1,2-D1 CHLORO BENZENE	CHLC BENZ	
SS#7 SS#8 SS#11 SS#12	02 03 11 12 14 14 15 15 15 22 22 22	12 SHAL W 3 S 6 S 9 S 6 S SHAL W 3 S 6 S 0 S 0 S	J1621 J1671 J1684 J1691 J1692 J1693 J1698 J1699	821102 821014 821008 821020 821020 821020 821025 821025 821012 821012 821012 821012 821012 821118 821118	1210 1200 1200 0945 1020 1040 1510 1520 1230 0900 0930 1100 1036 1041 1050	10 10 430 800 5090 400	KMI KMI MI K I				11800	M	20	M M M M M M M M M M		 		
001112		0 3	31070	821118	1000	4700	- 1		1		1	1		- 1			1	1

UNITS: LIQUID - UG/L (PPB) DISSOLVED SOIL - UG/KG (PPB) DRY WEIGHT BASIS FOR ALL QUANTIFIABLE VALUES

M = COMPOUND PRESENT BUT BELOW THE MINIMUM QUANTIFIABLE LIMIT K = MULTIPLY THE VALUE BY 1,000 KK = MULTIPLY THE VALUE BY 1,000,000

STATION DESCRIPTION	STA WELL OTR NUM DEPTH M NUM	I,4-L CHLOI DATE TIME BENZE	3,3'- DI DICHLORO 2,4- RO BENZI DINITRO	2,6- I,2-DI DINITRO PHENYLHY FLUOR TOLUENE DRAZAINE ANTHENE	S 4-CHLORO 4-BROMO BIS(2- PHENYL PHENYL CHLOROISO PHENLY PHENLY PROPYL) ETHER ETHER ETHER
BERM #3 SS#2 SS#4 SS#5 SS#6 SS#7 SS#8 SS#9 SS#10 SS#11 SS#12	03 6 S J1620 03 9 S J1621 11 12 S J1671 14 3 S J1691 20 3 S J1733 21 3 S J1739 21 6 S J1740 22 3 S J1745 22 6 S J1746 22 12 S J1748 22 15 S J1749 23 3 S J1757 1 S J1789 0 S J1628 0 S J1636 0 S J1641 0 S J1646 0 S J1659 0 S J1675 0 S J1675	821014 1205 821014 1210 821008 1200 821020 0945 821021 0940 821021 1400 821021 1445 821021 1510 821012 0930 821012 0930 821012 1130 821012 1100 821012 1100 821026 1130 821018 10952 821118 1002 821118 1002 821118 1008 821118 1044 821118 1044 821118 1044 821118 1048 821118 1048 821118 1050 821118 1050			MI I

UNITS: LIQUID - UG/L (PPB) DISSOLVED

M = COMPOUND PRESENT BUT BELOW THE MINIMUM QUANTIFIABLE LIMIT K = MULTIPLY THE VALUE BY 1,000 KK = MULTIPLY THE VALUE BY 1,000,000

WESTERN PROCESSING INVESTIGATION KENT, WASHINGTON

STATION DESCRIPTION		WELL DEPTH	н м	OTR NUM	DATE	TIME	BIS 2-CHLORO ETHOXY METHANE	HEXA CHLORO BUTA	HEXA CHLOROCY CLOPENT AD IENE	ISO	NAPH	T R A L S	N- NITROSO DIMETHYL	N- NITROSO DIPHENYL AMINE	N- NITROSO DIPROPYL AMINE
				J1618	821102			l	!	l		!		1 20 M	!
	03			J1621	821014			!	!		1 13 K		1	1	
	05 05			J1632 J1633	821018 821018				1		400 M			1	1
	10			J1663	821019				1	I 400 M		1		1	i
	10			J1665	821019				1	1 400 M		i		i	i
	II			J1669	821008			i	1	1	500 N	i i	i	i	i
	11			J1670	821008			i	i	i	1 17 KM		i	i	i
	- 11			J1671	821008	1200		1	i	1 400 M	5200	1	İ	Ì	1
	- 11	SHAL	W	J1672	821109	1030		I	1	1 20 M		11	1	1	1
	11	DEEP		J1678	821109	1100		l	1		23 M	11	1	1	1
	12			11680	821025				1	1	l	1 10 100	1	1 480 M	1
	12			J1684	821103				1	1	20 M				1
	14			J1691	821020				!		11800 N			!	!
	14			J1692	821020			1 400 M		1 400 14	400 M			1	!
	14			J1693	821020					1 400 M			1		1
	15	SHAL		J1702	821112			1	1	1	20 N		!	1	1
	17			J1711 J1716	821011 821013						11700 M 1 400 M		1	1	1
	17	DEEP		J1710	821110					I 44 M			1	1	1
	20			J1734	821021				1	1 44 1	4300	1		1	i
	20			J1736	821021			i		i	1 400 N	i	i	i	i
	21			J1740	821021					i	400 N		i	i	i
	21			J1741	821021			i	i	i a	1 400 M		İ	i	i
	22	3	S	J1745	821012	0900		1	1	1	1 34 KM	1	1	1	1
	22	6	5	J1746	821012	0930		1	1		1 30 KM	il	1	1	1
	22			J1747	821012				l	1	1 13 KM		1	1	1
	22			J1748	821012				1	1	1 12 KM	H	1		1
	22		-	J1749	821012				!	1	2961		1	1	1
	22	DEEP		J1756	821110				1	1 540	40 M		1	1	1
BERM #1	28	SHAL	W		821116			l I		540	1 400 1		1	1	1
SS#4				J1787 J1635	821025 821118						400 M 7400			1	1
SS#6				J1646	821118			2/50/15			400 M	i	i	1	i
SS#7				J1647	821118			1100	10.00	i	4000	i	i	i	i
SS#8				J1659	821118				i		6200 K	i	i	i	i
SS#9				J1673	821118				1		13 KM		1	i	1
SS#10				J1674	821118			1	1		1 120 K	1	1	1	1
SS#11		C	S	J1675	821118	1050		1	1		627 K	1	1	1	1
SS#12		C) S	J1676	821118	1053		I	1	1	18 K	1	1	1	1
TRANSPORT BLANK			W	J0429	821101	1100			1		20 M	1	1	1	1

M = COMPOUND PRESENT BUT BELOW THE MINIMUM QUANTIFIABLE LIMIT K = MULTIPLY THE VALUE BY 1,000 KK = MULTIPLY THE VALUE BY 1,000,000

STATION DESCRIPTION		WELL DEPTH M	OTR NUM	DATE	TIME	BIS 2-ETHYL HEXYL PHTHALAT	BENZYL BUTYL PHTHALAT	DI-N- BUTYL PHTHALAT	B A S E DI-N- OCTYL PHTHALAT	/ NEU DIETHYL PHTHALAT	DIMETHYL	BENZO ANTHR CENE		BENZO A	BENZO B FLUORAN THENE
	03		J1621	821014			!		!	!					1
	11		J1669 J1671	821008 821008		29.9K	10100		!	1		1 040			
	12		J1684	821103		29.91	19100	1	1	1	1	840	M		11 40 14
	16		J1704	821020		29 K		1	1		1	60	M	I 40 N	40 M
	16	9 S	J1705	821020		29.6K		i	i	i	i			i	1
	21		J1739		1400		1	1	ĺ	İ	i	14000		i	i
	21		J1740		1445		1	1	1	1	1	1 400	M	İ	i
	21		J1741		1510	600 M		1	1	1	!	1		l	1.
	22		J1746 J1747	821012 821012		29 KM 410 K	1	1	1		ļ.	1883			!
	22		J1749	821012		31 K		1	1	1	1	1			1
	23		J1757	821026		31 K		i	1	i	1	400	М		
	30	SHAL W	J0465	821220	1100	544K	1	i	i	i	i	1			i
SS#2			J1628	821118		74 K	1	1	1	1	1	1			i
SS#4			J1635	821118		410 K	1	1	29 K	1	1	1 400	M		1
SS#6 SS#7			J1646	821118		1000 M		1		!	1	1.12			1
SS#8			J1647 J1659	821118 821118		4600		1	1		1	720	M	-	
SS#10			J1674	821118		500 K		1			1	884	K		200 K
SS#11			J1675	821118		860 K		i			1	76	K	4,50	
SS#12			J1676	821118		12 K	i	2600	i		i	14400	N		

UNITS: LIQUID - UG/L (PPB) DISSOLVED

 $\mbox{M} = \mbox{COMPOUND}$ PRESENT BUT BELOW THE MINIMUM QUANTIFIABLE LIMIT $\mbox{K} = \mbox{MULTIPLY}$ THE VALUE BY 1,000 KK = MULTIPLY THE VALUE BY 1,000,000

STATION DESCRIPTION		WELL DEPTH M	OTR NUM	DATE	TIME	BENZO K FLUORAN THENE			ACENAPH THYLENE			/ N E U BENZO GHI PERYLENE		PHENAN	DIBENZO A,H ANTH RACENE	INDENO I,2,3-CI PYRENE
	03		J1620	821014			1	- 4				1		1 400	MI	
	03		J1621	821014			I	- 1		1		I	1 400	M16500	i	i
	05		J1631	821018			1			1		1	1	1 400	MI	İ .
	05 05		J1632	821018			1 400	M		1		1	1		MI	1
	11		J1633 J1669	821018			!			į.		1	1		MI	1
	- 11		J1670	821008 821008			1			1		1	I		MI	1
	- ii		J1671	821008			1 520			11000		!			MI	1
	12		J1684	821103		40	520 M 20	MI		11200	Μ		1 16.9K	62.4K		!
	14		J1691	821020		40	MI 20	M		1		64 M	1	1.700	1 44 M	1 42 N
	14		J1692	821020				- 1		1		1	1		MI	1
	14		J1693	821020				- 1		1			1		MI	!
	17		J1711	821011			1	1		1			1 400		MI	!
	21		J1739	821021			2500	i		11600			400		MI	1
	21		J1740	821021			1 400	MI		1			I I	17000	1	1
	21		J1741	821021			1	- 11		i					MI	1
	22		J1745	821012			1	i		1			1 10 KI		M I M I	!
	22		J1746	821012			i	i		1 10	KM		1 10 K		M [1
	22		J1747	821012			i	i		1 10	Mil		ION		7	Į.
	22		J1748	821012			i	i		i				12 K	MI	1
	22	15 S	J1749	821012			i	i		1 400	М		550	1 2961	1	1
	23	3 S	J1757	821026	1130		1 400	MI		1			1		мі	1
BERM #1		1 5	J1787	821025	1000		i	i		i					MI	1
BERM #3		1 S	J1789	821025	1030		1	i		i					MI	1
SS#2		0 S	J1628	821118	0952		1	i		i				1 11 K		i
SS#4			J1635	821118	1002		1 400	MI		i				i ii K		i
SS#5			J1641	821118			1	1		İ					мi	i
SS#6			J1646	821118	1027		1	- 1		1					41	i
SS#7			J1647	821118			1 880	MI		1 400	MI		800 M	116500	i	i
SS#8			J1659	821118		130 K		KI	400 M	1	. 1	i	8600 K	1 20 KK	1	i
SS#9			J1673	821118			1 11	KMI		1	1	1		1 18 K		1
SS#10			J1674	821118			1	1		1	1	- 1		1 190 K		1
SS#11			J1675	821118			85	KI		1	1	1	62 K	1 763 K	1	1
SS#12		0 5	J1676	821118	1053		15100	1			- 1	1	5100	11800 1	41	İ

M = COMPOUND PRESENT BUT BELOW THE MINIMUM QUANTIFIABLE LIMIT

K = MULTIPLY THE VALUE BY 1,000 KK = MULTIPLY THE VALUE BY 1,000,000

WESTERN PROCESSING INVESTIGATION KENT, WASHINGTON

STATION DESCRIPTION		WELL	OTR M NUM	DATE	TIME	PYREN		BENZO(A)ANTHRACENE/ CHRYSENE	A S E / N E U T R A BENZO(B)FLUORANTHENE/ BENZO(K)FLUORANTHENE	ANTHRACENE/ PHENANTHRENE
	03	6	S J1620	821014	1205	440	MI			
	03	9	S J162	821014	1210	400	MI		1	1
	11	12	S J167	821008	1200	11.	OK I		1	1
	14	3	S J169	821020	0945	640	MI		1	1
	20	3	S J173	821021	0940	520	MI		1	1
	21		S J1739			7400	- 1		1	1
	21		S J1740				MI			
	21		S J174				M		Į.	
	22		S J1745	Company of the last terms			KMI			
	22		S J1746				KMI		!	
	22		S J1749				M			
5551. ".	23	3	S J175				MI		!	
BERM #1			S J178				MI			
BERM #3		ı	S J1789			0.7.5	MI			
SS#2		-	S J1628				KMI			
SS#3			S J1629				M			
SS#4			S J163				М			
SS#5			S J164				MI			
SS#6 SS#7			S J164				1411			
SS#8			S J1659				KK I		i	
SS#9			S J167						i	i
SS#10			S J167				KI		i .	i
SS#11			S J167							
SS#12			S J1670				2000		i	

UNITS: LIQUID - UG/L (PPB) DISSOLVED

M = COMPOUND PRESENT BUT BELOW THE MINIMUM QUANTIFIABLE LIMIT K = MULTIPLY THE VALUE BY 1,000 KK = MULTIPLY THE VALUE BY 1,000,000

WESTERN PROCESSING INVESTIGATION KENT, WASHINGTON

STATION DESCRIPTION		WELL DEPTH		OTR NUM	DATE	TIME	I,I,2,2- TETRA CHLORO ETHANE	CHLORO ETHANE		2-CHLORO ETHYL VINLY ETHER	CHLORO	1,1-	TRANS- 1,2- DICHLORO ETHENE	1,2- DICHLORO PROPANE	TRANS- 1,3- DICHLORO PROPENE	CIS-1,3- DICHLORO PROPENE
	01			J1601	821007				ļ		!	!	2.5 M	!	!	!
	01			11606	821108				- !		!	!	14400	l	1	
	02			J1612 J1616	821108 821014				- 1		I	1	1 18 M		1	!
	02			J1617	821014				1		1	1	9.2 M 2.7 M		1	1
	02			J1618	821102				i		32	I II M	11200		1	
	03			J1621	821014				i		1	i ''	2.5 M	i	i	i
	04	SHAL	W	J1630	821102			11	MI		I 17 M	1 38	15800	i	i	i
	05	SHAL	W	J1636	821103	1500			-		1 130	1 87	1 15 M	ĺ	ĺ	İ
	06			J1642	821103		4		1	1	52	1 29	1 21 M	1	I	1
	07			J1648	821103				-!		l 15 M	9.2 M			ļ.	1
	08	SHAL		J1649	821025			-	NA I		56	1 00	2.5 M			1
	08	SHAL			821108 821103			5	MI		56	88	920			
	10			J1665	821019		2.5 M		i			1	4600			
	11			J1678	821109		2.0		i			i	780		i	1
	12	SHAL			821103		i		i	i	13 M	1 8.5 M				i
	13	6	S	J1686	821027	1325	2.5 MI		1			i			İ	i
	14			J1693	821020	1040			1	1	3.8 M	1			l	
	14			J1694	821020				1		42	1			l	1
	14			J1695	821020		2.5 MI		1	1		1			l	
	14	SHAL			821104				1	!	1700			10 Y		1
	15	SHAL		J1698	821025 821112				1		5 KM					
	16	SHAL			821104				1	- 1	27 K 20 M		12 M			
	17			J1710	821011				i	i	8.9KM		1 12 111			
	17			J1711	821011		i		i	i	18 K					i
	17			J1712	821011		i		i	i	505	1 2.5 M	2.5 MI	100	i	İ
	17			J1716	821013	1350	- 1		-	1	65	1			İ	İ
	17			J1717	821013				ļ		2.5 M					
	17	SHAL			821110				1		12 K					l
	17			J1720 J1726	821110		1		- 1	- !	130	E M	70			l
	19			J1728	821112 821027		2.5 MI		- 1	- 1	5 M	1 5 M	38			1
	21			J1741	821021		2.0		i	i			24			l I
	21	SHAL			821105		i		i	i		i	390 K I			i
	22	9	S	J1747	821012	1000	i		İ	i		į i	2.5 MI	i		
	22			J1750	821110		1		- 1	1		1	130			
		DEEP			821110				ļ	1	7800					
	23	SHAL			821026		10 11 12 1		I				85			
	24			J1765 J1766	821022				1	- 1	2 5 14		28			
	24			J1767	821022 821022				1	1	2.5 M		34 2.5 M			
	25			J1771	821026		i		i				8.1 MI			
	25			J1774	821111		i		i	1 10 - 10 - 1			72	1		
	27			The same of the sa	821116		i		i	i	6700	ĺ		i		i

ORGANIC ANALYSES

WESTERN PROCESSING INVESTIGATION KENT, WASHINGTON

M = COMPOUND PRESENT BUT BELOW THE MINIMUM QUANTIFIABLE LIMIT K = MULTIPLY THE VALUE BY 1,000 KK = MULTIPLY THE VALUE BY 1,000,000

				V O	LATILES		
				CARBON	1,2-	1,1,1- 1,1-	1,1,2-
	STA WELL OTR		ACRYLO	TETRA	CHLORO DICHLORO	TRICHLOR DICHL	ORO TRICHLOR
STATION DESCRIPTION	NUM DEPTH M NUM	DATE TIME	ACROLEIN NITRILE	BENZENE CHLORIDI	E BENZENE ETHANE	ETHANE ETHAN	E ETHANE
BLANK	S J1797	821008	1	1 1	1	1 2.6 MI	1 1
SS#4	0 S J1635	821118 1002	1	1	1 1	1 2.5 MI	
TRANSPORT BLANK	W J0429	821101 1100	1	1	1 1	5 M	

UNITS: LIQUID - UG/L (PPB) DISSOLVED

M = COMPOUND PRESENT BUT BELOW THE MINIMUM QUANTIFIABLE LIMIT K = MULTIPLY THE VALUE BY 1,000 KK = MULTIPLY THE VALUE BY 1,000,000

										LATI					
STATION DESCRIPTION		A WELL A DEPTH N	OTR 4 NUM	DATE	TIME	ACROLE IN	NITRILE	BENZENE	CARBON TETRA CHLORIDE	BENZEN	E	ETHANE	O TRICHLOR	I,I- R DICHLORO ETHANE	1,1,2- TRICHLOR ETHANE
	01	9 9	J1603	821007	0930		1		1	1 11				1	
	01	SHAL V	V J1606	821108	1330		İ	 6.0 M 420	i	i ''			370	i	i
	01		1 11612				1	1	ĺ	İ		i	1 6.8 M	i	i
	02		V J1618	821102			I	1 6.0 M	1	1		5	MI 120	1 30	1 9.3 M
	04	SHAL V		821102				1 420	1	1		5	MI 270	1 160	1 12 M
	05		J1634	821018			1	1		1			1 34	1	1
	05		1 11636	821103				1 77		5	M			320	1
	06 07	SHAL V	11642	821103 821103				1 24 M		5	М	5	MI 170	49	6.9 M
	08	SHAL V		821108			I I	1 12 M		1			1 80	47	1
	09	9 9	J1657	821019				1 14 M	!	1	1	9.7		620	45
	09	12 9	J1658	821019				1		1	- 1		7.3 M		!
	09	SHAL W		821103			i	1		1	- 1		4.9 M	!	1
	10	SHAL W		821104				1			1		15500		
	11		J1667	821008				i		1			1 5 M		
	- 11	6 5		821008				i	i		1		2.5 M	ā.	
	11	8 9	J1669	821008				i	i	1	i		1 10 M	:	1 2 E M
	- 11	12 9	J1671	821008				i		i	i		1 18.2		2.5 M
	11	SHAL W		821109				i	i		i		1 73 K		5.9 M
	11	DEEP W	J1678	821109	100000000000000000000000000000000000000			i	i	i	i		15200	12100	1
	12	15 9	J1683	821025	1240	1		i		i	i		1 3.8 M		
	12	SHAL W	J1684	821103	1200			1 9.7 M		i	i		1 120	1 21 M	1 5 M
	14	9 5	J1693	821020	1040	- 1		i i		i	i		1 4.5 M		, , m
	14		J1694	821020		1		1 5.9 M			i		1 10 M		
	14	SHAL W	J1696	821104		1		1 5 M		ĺ	1		1 750	1	i
	15	3 9	J1697	821025		1		1 1			1		1 3.1 M	i	i
	15		J1698	821025				1 5 KM			1		1 174 K	ĺ	
	15		J1699	821025				1			1		1 15 KM		
	15	SHAL W		821112							1	16 K	1 340 K	33 K	
	16		J1703	821020		Fig 1					1		1 5.4 M		1
	17	SHAL W	J1708 J1710	821104							ļ		62	I II M	
	17		J1711	821011		1		6.5KM			!		1 15 KM		
	17		J1712	821011		- :		1 100 5			!		1 16 K		
	17		J1716	821013		i		199.5 9.8 M			- 1		332.5	17.3	
	17	SHAL W		821110		1		12200			- 1		40		
	20		J1736	821021		i		2.5 MI			. !		11700		
	22		J1747	821012		i		2.5 MI					3.2 M		
	22		J1748	821012		i		2.5 MI	i i		i			3.2 MI 2.5 MI	
	26	6 S	J1782	821026		i		i	i i		i		17	2.5	
	26		J1783	821026		i		i i	i		i		1 7.4 M	i	
	27	SHAL W	J0462	821116	1100	1		i i	i		i		1 20 K	i	i
	28	SHAL W		821116	1230	1		I IO MI	i		i		1 100	12 M	i
DEDIA #P	29	SHAL W		821115	1300	1		l i	i		i		1 5 MI		
BERM #3			J1789	821025		- 1	The second	l i	1		1		1 2.6 MI	i	i
BERM #8		IS	J1794	821025	1145	1			1	2.5	MI		1	i	i

ORGANIC ANALYSES

WESTERN PROCESSING INVESTIGATION KENT, WASHINGTON

M = COMPOUND PRESENT BUT BELOW THE MINIMUM QUANTIFIABLE LIMIT K = MULTIPLY THE VALUE BY 1,000 KK = MULTIPLY THE VALUE BY 1,000,000

							1,1,2,	2-		2	-CHLOR	0	V	0 1	LATIL	E S		TRANS-	
STATION DESCRIPTION		WELL DEPTH	н М	OTR NUM	DATE	TIME	TETRA CHLORO ETHANE		CHLORO ETHANE	E	THYL INLY THER	C	HLORO		I,I- DICHLORO ETHENE	1,2-	1,2- DICHLORO PROPANE	1,3-	CIS-1,3 DICHLOR PROPENE
	28	SHAL	- W	J0463	821116	1230			5	MI			12	—- М	5.4 M				
	29	SHAL	W	J0461	821115			i	3	1-11		i	29	Ial	1 9.4 1				
BERM #6		1	S	J1792	821025	1115	2.5	MI		i		İ			i		i la la la la la la la la la la la la la	i	i
BERM #8		1	S	J1794	821025	1145	2.5	MI		1		1			1		1	i	i
SS#4		0	S	J1635	821118	1002		1		1		İ	5.1	M	İ		i e	i	i
TRANSPORT BLANK			W	J0429	821101	1100		-		1		1	5	M	1		İ	1	1

UNITS: LIQUID - UG/L (PPB) DISSOLVED

M = COMPOUND PRESENT BUT BELOW THE MINIMUM QUANTIFIABLE LIMIT K = MULTIPLY THE VALUE BY 1,000 KK = MULTIPLY THE VALUE BY 1,000,000

STATION DESCRIPTION		WELL DEPTH		OTR NUM	DATE		ETHYL BENZENE	METHYL LENE	CHLORO	BROMO METHANE	BROMO	BROMO D I CHLORO		DICHLORO DIFLUORO	DIBROMO
	01				821007			1 16	!	!	!		1 4 M		
	01			J1602 J1603	821007 821007			1 17		!	Į.	!	4.3 M		l
	01			J1604	821007			17 11.7 M	1		1	1	2 E M		1
	01			J1606	821108			1 190	i	i	i	i	2.5 M		1
	01	DEEP		J1612	821108			1 5 M	İ	i	i	i			i
	02			11613	821014			1 12 M		1	1	1	i i		i
	02	12	5	J1616 J1617	821014			1 9 M		11	!	1			
	02	SHAL			821014 821102			9 M 180		1		!			l
	03			J1619	821014			7.7 M	i		1	1			1
	03	6	S	J1620	821014			i 78	i	i	i	i i			
	03			J1621	821014			7.5 M	1	1	İ	i i	i		
	04			J1625	821018			22		!		1 1			
	04			J1626 J1627	821018 821018			I II M		!		1	1		
	04	SHAL			821102			7.6 MI 930				!!!			
	05			11631	821018			1 139	200	i		1 1			
	05			J1633	821018			7.8 MI		i	i	1 1		1	
	05			J1634	821018	1330	16	26.03		i	İ	i i		i	
	05	SHAL			821103		32	23 K I		1		i i	5 MI	i	
	06 06			J1637 J1638	821018			3.2 MI		!		! !	1	1	
	06			11639	821018 821018			3.6 MI 5.9 MI		1		!!!			
	06			J1640	821018			5.9 MI		1		1 1			
	06	SHAL			821103		12 M			i		i i			
	07			J1643	821014			8.8 MI		i i		i i	i	i	
	07	6	S	J1644	821014			9.5 MI		1 1		i i	i	i	
	07	SHAL	S .	11645	821014		E M	8.4 MI				1	1	1	
	08			J1649	821103 821025		5 M	760				!!!	0.5.11		
	08				821025			II M					2.5 MI		
	08			11651	821025			IO MI		i i		i i	2.6 MI	i	
		SHAL			821108		5 MI			1 1		i i	9.8 MI	i	
	09			11655	821019			6.5 MI				1	- 1	- 1	
	09				821019 821019			6.9 MI		!!!		!	1	- 1	
		SHAL			821103			11 MI 220 K I					150	!	
	10				821019			32.5K	4.1	-					
	10	6	S.	11662	821019		i i	8.9 MI		i i		i i	i	i	
	10				821019		2.5 MI		2.5 M	la i		l i	i	i	
	10				821019		8.3 MI					1	2.5 M	i	
	10	SHAL			821019 821104		5.3 MI					!!!	1	1	
	11				821104			18 K I 4 MI							
	ii				821008		2.7 M						1		

UNITS: LIQUID - UG/L (PPB) DISSOLVED

M = COMPOUND PRESENT BUT BELOW THE MINIMUM QUANTIFIABLE LIMIT K = MULTIPLY THE VALUE BY 1,000,000

STATION DESCRIPTION		WELL DEPTH		DATE		ETHYL BENZENE	METHYL LENE	CHLORO METHANE	BROMO	BROMO	BROMO DICHLORO METHANE	FLUORO TRICHLOR	DICHLORO	CHLORO
	11	8	S J1669	821008		5.6 M	20	I	1	1			1	1
	11		S J1670			7 M			!	!	1	4	1	1
	11		S J1671 W J1672	821008 821109		143	51	1	1	1			!	
	ii		W J1678	821109			46 K		1	1	!		!	
	12		S J1679	821025			3.4 M			1		7 6 M	1	
	12		S J1680	821025			7.3 M			1		3.6 M 2.5 M	7	
	12		S J1681	821025			17.94		1	i		2.5 M		1
	12		S J1682	821025			7.4 M		i	i		2.5 M		
	12	15	S J1683	821025	1240		19	İ	i	i	i i	2.9 M		
	12		W J1684	821103	1200	5.4 M	1540		i	i	1	9.2 M		i
	13		S J1686	821027		2.5 M	9.9 M	1	1	1	1	2.5 M		i
	13		S J1687	821027			19		1	1	1	4.2 M	1	
	14		S J1692	821020					1	1	1 1	4.6 M	1	
	14		S J1693 S J1694	821020		7 I M								
	14		S J1695	821020 821020		3.1 M			1 3 M	1				
	14		W J1696	821104			82 K		1	1	1			
	15		S J1697	821025			02 K		1			77		2.0
	15		S J1698	821025		5 KM	30 K					73		
	15		S J1699	821025		2	5 KM		i	i	i i		1	
	15	SHAL	W J1702	821112		i	720 K		i	i	i i		i	
	16	3	S J1703	821020			116		1	1	i i	26	i	
	16		S J1704	821020			20		1	1	1 1			
	16		S J1705	821020			7 M		1		1 1	3 M		100
	16		S J1706	821020			19		1	1	1 1	2.8 M		
	16		S J1707	821020			8.1 M				1 1	3.3 M		100
	16		W J1708 S J1709	821104			430		!		!!!			R
	17		S J1710	821011 821011		37 K I	44 K 15 KM		1		!!!			
	17		S J1711	821011		37 K I			1		1 1			100
	17		S J1712	821011			1197		1			36		
	17		S J1713				4352		i	i	i	20		E Total
	17		S J1714	821013		i			i		i i	3.7 M		
	17	21	S J1716	821013	1350	89	832		i		i i	2.,		4. 1 . 1 1
	17		S J1717	821013	1400	27	29		1		i i			5 3 W
	17		S J1718	821013		- 1	1402		1	1	1		i i	
	17		S J1719				2030		I		1			
	17	SHAL	W J0427	821110			42 K		1			920		
				821110			1200			party in				
	18		S J1721	821026			11			31.79				
	18 18		S J1722 S J1723	821026		2.5 MI						2.5 M		
			S J1725 W J1726	821026 821112		2.5 MI 5 MI								
	19	3	S J1727	821027	1000	5 MI	וכ		1		1	3.6 M		
	19		S J1728			2.5 MI	5 MI		1		1 1	8.5 M		

UNITS: LIQUID - UG/L (PPB) DISSOLVED

M = COMPOUND PRESENT BUT BELOW THE MINIMUM QUANTIFIABLE LIMIT K = MULTIPLY THE VALUE BY 1,000 KK = MULTIPLY THE VALUE BY 1,000,000

WESTERN PROCESSING INVESTIGATION KENT, WASHINGTON

									METHYL				E S BROMO	FLUORO		
STATION DESCRIPTION		WELL		OTR NUM	DATE		ETHYL BENZENE		LENE CHLOR I DE	CHLORO METHANE	BROMO METHANE	BROMO FORM	D I CHLORO METHANE			
	19 19			J1729 J1730	821027 821027			-	29		1			9.2 M 7.4 M		
	19	SHAL			821101			i	24		i	i	i	7.41	i	i
	20			J1734	821021		3.0	Mİ	6.0 M	i	i	i	İ	2.5 M	İ	İ
	20			J1736	821021		2.8	MI			1	1	3.2 M		ļ.	!
	20			J1737	821021			1	16.5		ļ	!				
	20	SHAL			821104 821021			- 1	125 21		1	1				l I
	21			J1739 J1740	821021			i	21	1	i	i	i	3.8 M	i	i
	21			J1741	821021		18	i	9 M	i	i	i	i	2.5 M		Ì
	21			J1742	821021			1	318	l	1	1	1	1	1	1
	21	SHAL			821105			1	100 K	1	1	1	!			
	22			J1745	821012		7.3				!	!		2.7 M		
	22			J1746	821012		16		70	1	1	1	1	1 2.5 M		1
	22			J1747 J1748	821012 821012		28 21.3	1.5	30	1	1	1	1	2.5 M		i
	22			J1749	821012		21.5	i	46		i	i	i	59	i	i
	23			J1757	821026			i	.40	i	i	i	i	3.2 M	i	İ
	23			J1758	821026			i	8.6 M	İ	i	i	1	1 4.1 M	1	1
	23			J1759	821026			1	6 M	1	1	1	!	4.5 M	1	!
	24	3	S	J1763	821022				20	!	!	!	1		1	
	24			J1765	821022			- !	20 7 M	1			1 2.5 M			
	24 25			J1767 J1770	821022 821026			1	7 M 292	1	1	1	1 2.5 M			i
	25			J1771	821026		6	мі	22	i	i	i	i	2.5 M	i	i
	25	SHAL			821111		19			i	i	i	i	1	İ	İ
	26			J1781	821026			1		1	1	1	1	1 4.7 M	1	1
	26			J1782	821026			- 1		1	1	ļ		3.8 M		1
	26			J1783	821026			1	16 1	1	1	. [1	4.2 M		
	27	SHAL			821116				16 K		и	1	1	1	1	1
	28	SHAL		10463	821116 821115				630	14	1	1	i		i	1
BERM #1	23			J1787	821025				2.5 M	i	i	i	i	1 2.5 M	i	i
BERM #2				J1788	821025			i		i	i	i	i	1 2.6 M		İ
BERM #3				J1789	821025			- 1	5.4 M	İ	İ	1	1	3.1 M		
BERM #4				J1790	821025				25.52	1	1	I	1	2.5 M	I	
BERM #5				J1791	821025			1	130	1	!	!	1	M	1	
BERM #6				J1792	821025 821025			1	3 M		1	1		6.1 M 1 7.8 M		
BERM #7 BERM #8				J1793 J1794	821025			i) M	1	i	2.5 M	ni .	4.7 M		
BERM #9				J1794 J1795	821025			i		i	i	1		1 3.1 M		1
BLANK				J1797	821008			i	88	ĺ	1	1	1	1	1	1
DRILLER'S WATER				J1799	821012			1	56	ľ	1	1	1		!	
SS#2				J1628	821118			MI		1	!	1		1 10 M		
SS#3				J1629	821118			1	27	1				6.1 M 3.4 M		I I
SS#4		0	5	J1635	821118	1002		- 1	21	1	1	1		J. 4 14		

ORGANIC ANALYSES

WESTERN PROCESSING INVESTIGATION KENT, WASHINGTON

M = COMPOUND PRESENT BUT BELOW THE MINIMUM QUANTIFIABLE LIMIT K = MULTIPLY THE VALUE BY 1,000 KK = MULTIPLY THE VALUE BY 1,000,000

									v o	LATIL	E S			
STATION DESCRIPTION	WELL DEPTH	М	OTR NUM	DATE	TIME	ETHYL BENZENE	METHYL LENE CHLORID	CHLORO E METHANE	BROMO METHANE	BROMO FORM	BROMO DICHLORO METHANE	FLUORO TRICHLOR METHANE	DICHLORO DIFLUORO METHANE	
SS#5	 	-	11641	001110	1000		140							
	-		J1641	821118			14.9	!				6.7 M		
SS#6	0	5	J1646	821118	1027		23	1	1	1		1 15	1	1
SS#7	0	S	J1647	821118	1036		29	1	1	1		1 14	1	1
SS#8	0	S	J1659	821118	1041		1 51	1-	1	1	1	1 6.0 M	1	i
SS#9	0	S	J1673	821118	1044		1 33	1	1	1	1	1 2.5 M	1	1
SS#11	0	S	J1675	821118	1050		63	1	1	1	1	1 25	i	İ
SS#12	0	S	J1676	821118	1053		1 10	MI	1	1	1	1 8 M	1	1
TRANSPORT BLANK		W	J0429	821101	1100		1 11	MI	1	I and the	1	1	1	i

UNITS: LIQUID - UG/L (PPB) DISSOLVED

M = COMPOUND PRESENT BUT BELOW THE MINIMUM QUANTIFIABLE LIMIT K = MULTIPLY THE VALUE BY 1,000 KK = MULTIPLY THE VALUE BY 1,000,000

ATILES ----

CTATION DECCE LETTON															
STATION DESCRIPTION		WELL O		OTR NUM	DATE	TIME	TETRA CHLORO ETHENE		TOLUENE	TR ICHLOR ETHENE	VINYL CHLOR				
	01			J1601	821007	0900			1	1 3.4 M	1				
	01			J1602	821007	0915				1 2.5 M	1				
	01	SHAL		J1606	821108	1330				13900					
	01	DEEP		J1612	821108	1400				46	l				
	02			J1616	821014	1040	88		!						
	02			J1617	821014					1 80	1				
	02	SHAL			821102	1100	8.4	M	M	13600					
	03			J1620 J1621	821014	1205			2.5 M	2.5 M					
	04			J1626	021014	1430			1 2 5 4	2.5 M					
	04			J1627	021010	1430			2.5 1	1 2 5 14	l				
	04			J1630	821102	1500			14000	2.5 M					
	05	SIINL	S	J1632	821018	1330	2.5	м	1 4000	11800	250				
	05			J1633	821018	1330	2.6	M	300	2.5 M					
	05			J1634	821018				126	1 192					
	05	SHAL		J1636	821103		37		14100	1 16 K	5	М			
	06			J1640	821018			1	14100	1 2.5 M		141			
	06	SHAL		J1642	821103				100	2200					
	07	SHAL		11640	001107	1 470	7 0			11500	40				
	08			J1650	821025	1425	1.2	1-1	02	6.6	40				
	08			J1651	821025	1440		i		3.1 M					
	08	SHAL		11654	821108	1500	6.5	М	23 M	13100					
	09			J1657	821019	1040	3.4	MI	25	2.8 M					
	09			J1658	821019	1045		i		1 7.0 M					
	09			J1660	82103 821025 821025 821108 821019 821019 821103 821019 821019 821019 821104 821008	1500		i	2400	I 17 K					
	10			J1663	821019	1310		i	3.7 M						
	10	12	S	J1664	821019	1340	2.5	MI	68						
	10			J1665	821019	1405	2.5	MI	19	1 2.5 M					
	10	SHAL	W	J1666	821104	1000	5	MI	2300	910					
	11	3	S	J1667				1		1 4 M					
	11	6	S	J1668	821008	1115	2.5	MI	2.5 M	1 19					
	11	8	5	11669			2.5			38					
	11			J1670	821008			1	10 M	9.5 M					
	11			J1671	821008	1200	81	1		1 312					
	11	SHAL		J1672	821109	1030	5.4	1	2800	1 80 K					
	11	DEEP		J1678	821109	1100		-	1100	1 14 K					
	12			J1682	821025	1230		ļ		4.9 M					
	12			J1683	821025	1240	de secondo de la companya del companya de la companya del companya de la companya		4,6	38					
	12	SHAL				1200	2.4	1-11	66	480	5	М			
	13			J1686	821027		40	!	2.5 M						
	14	3	5	J1691	821020		49			I II MI		1-1			
	14			J1692	821020		48								
	14			J1693	821020		113		4.1 M						
	14			11694	821020		274	-		1 169					
	14			J1696 J1698	821104 821025		530	-	540 48 K	3400 580 K					

UNITS: LIQUID - UG/L (PPB) DISSOLVED

M = COMPOUND PRESENT BUT BELOW THE MINIMUM QUANTIFIABLE LIMIT K = MULTIPLY THE VALUE BY 1,000 KK = MULTIPLY THE VALUE BY 1,000,000

STATION DESCRIPTION		WELL DEPTH N	OTR NUM	DATE	TIME	TETRA CHLORO ETHENE	TOLUENE	TR ICHLOR ETHENE	VINYL CHLORIDE	
	15		J1699	821025					N 1	
	15		V J1702	821112				1 210 K		
	16		J1703	821020			2.5 M			
	16 16		J1707	821020			1 10 M	6.5 M		
	17		J1708 J1709	821104 821011			l 18 M l 39 K	990		
	17		J1710	821011				558 K		
	17		J1711	821011			1 280 K			
	17		J1712	821011		36	1 19.9K		1	
	17		J1713	821011				14760	i i	
	17		J1716	821013				11406	i	
	17	24	S J1717	821013	1400	2.5 M	90	1 62	1	
	17		J1718	821013			222	1	1	
	17		J1719	821013			203	1		
	17		J0427	821110			1 22 K			
	17 18		J1720	821110	10.200	2 F M	430	830		
	18		5 J1721 5 J1722	821026 821026				1 15		
	18		J1723	821026			2.5 M			
	18		J1726	821112		7.6 M				
	19		J1728	821027		7.0	1 2.5 M		i	
	19		J1729	821027			1	7.8 M	i	
	19	12 3	J1730	821027	1120		1	23	1	
	20		J1733	821021	0940	509	1		It is	
	20		S J1734	821021			2.5 M	27	1	
	20		J1735	821021				676		
	20		J1736	821021		484	6.4 M			
	20		J1737	821021		123		69		
	20		J1738	821104				11100		
	21		J1741 J1742	821021		2.5 M				
	21		J1742	821021 821021				1520 37	2 60	
	21		1 11744	821105				1 170 K	360	
	22		J1745	821012			4.2 M		1	
	22		J1746	821012			I II M			
	22		J1747	821012		2.5 M		1 8.2 MI	i	
	22	12 9	J1748	821012	1030	2.5 M	26	1 5.2 MI	1	
	22		J1749	821012			2.5 M	2.5 M	T T	
	22		J1750	821110			68	1 380 I	1	
	22		J1756	821110		100		17 K	1	
	23		J1757	821026			2.5 M		,	
	23		J1758	821026			1 10 M			
	23		J1759	821026			25			
	23		1 11762	821026		77	85	1 47 1		
	24 24		J1765 J1766	821022 821022		77 280		1 4.7 MI 1 5.5 MI	2.8 MI	

UNITS: LIQUID - UG/L (PPB) DISSOLVED

M = COMPOUND PRESENT BUT BELOW THE MINIMUM QUANTIFIABLE LIMIT K = MULTIPLY THE VALUE BY 1,000 KK = MULTIPLY THE VALUE BY 1,000,000

STATION DESCRIPTION		WELL DEPTH N	OTR 1 NUM	DATE	TIME	TETRA CHLORO ETHÈNE	-	TOLUENE		ICHLO		V O L
							-					
	24 25		J1767 J1770	821022			MI			4.81	МІ	
	25		J1771	821026 821026			MAI	216	1 4	13	1	0 0 141
	25		1 11774	821111			Int I	19.5 22 M		6.4 l		2.8 MI
	26		J1781	821026		4.2	мі			24	1	23 MI
	26		J1782	821026		16	ï	5.2 M		80	1	1
	26		J1783	821026			Mİ	2.2 11		77	i.	i
	26		J1786	821111			i		113		i	i
	27	SHAL W	J0462	821116	1100		1	5 M	1 1		1	i
	28	SHAL W	J0463	821116	1230	50	1	110	1 8	40	1	i
	29		J0461	821115			- 1	5 M	1 1	20	1	i
BERM #1			J1787	821025	1000		1		1	2.5 N	MI	1
BERM #3			J1789	821025		- 11	MI		1	18	1	
BERM #4		1 5		821025			1		1	37	1	1
BERM #5			J1791	821025			- !		1	3.1 N		- 1
BERM #6 BERM #7			J1792	821025			.!		1	2.6 N		
BERM #8			J1793	821025			. !		1	2.5 N	41	
BERM #9			J1794	821025		2.5	MI	2.5 M	!	21		
BLANK			J1795 J1797	821025 821008	1200		1		1	6.2 N		1
SS#2			J1628	821118	0052	99	1	2 E M	1	6.8 N		1
SS#4			J1635	821118		99	1	2.5 M 2.8 M		2.5 M		
SS#7			J1647	821118			i	2.0 1	i	2.5 M		
SS#11			J1675	821118			i		i	2.5 M		
SS#12			J1676	821118			i		i	2.5 M		- 1
TRANSPORT BLANK			J0429	821101			i		i	76	i	i

Washijten Dost of Scolg